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Summary

Azzalini & Dalla Valle (1996) have recently discussed the multivariate skew-normal dis-

tribution which extends the class of normal distributions by the addition of a shape pa-

rameter. The first part of the present paper examines further probabilistic properties of

the distribution, with special emphasis on aspects of statistical relevance. Inferential and

other statistical issues are discussed in the following part, with applications to some mul-

tivariate statistics problems, illustrated by numerical examples. Finally, a further extension

is described which introduces a skewing factor of an elliptical density.

1



1 INTRODUCTION

There is a general tendency in the statistical literature towards more flexible methods, to

represent features of the data as adequately as possible and reduce unrealistic assump-

tions. For the treatment of continuous multivariate observations within a parametric ap-

proach, one aspect which has been little affected by the above process is the overwhelming

role played by the assumption of normality which underlies most methods for multivari-
ate analysis. A major reason for this state of affairs is certainly the unrivaled mathematical

tractability of the multivariate normal distribution, in particular its simplicity when deal-

ing with fundamental operations like linear combinations, marginalization and condition-

ing, and indeed its closure under these operations.

From a practical viewpoint, the most commonly adopted approach is transformation

of the variables to achieve multivariate normality, and in a number of cases this works sat-

isfactorily. There are however also problems: (i) the transformations are usually on each

component separately, and achievement of joint normality is only hoped for; (ii) the trans-

formed variables are more difficult to deal with as for interpretation, especially when each

variable is transformed using a different function; (iii) when multivariate homoscedasticity

is required, this often requires a different transformation from the one for normality.
Alternatively, there exist several other parametric classes of multivariate distributions

to choose from, although the choice is not as wide as in univariate case; many of them

are reviewed by Johnson & Kotz (1972). A special mention is due to the hyperbolic distri-

bution and its generalized version, which form a very flexible and mathematically fairly

tractable parametric class; see Barndorff-Nielsen & Blæsild (1983) for a summary account,

and Blæsild (1981) for a detailed treatment of the bivariate case and a numerical example.

As for extensions of distribution theory of classical statistical methods, the direction

which seems to have been explored more systematically in this context is the extension of

distribution theory of traditional sample statistics to the case of elliptical distribution of the

underlying population; elliptical distributions represent a natural extension of the concept

of symmetry to the multivariate setting. The main results in this area are summarized by
Fang, Kotz & Ng (1990); see also Muirhead (1982, chapters 1 and 8).

Except for data transformation, however, no alternative method to the multivariate nor-

mal distribution has been adopted for regular use in applied work, within the framework

considered here of a parametric approach to handle continuous multivariate data.

The present paper examines a different direction of the above broad problem, namely

the possibility to extend some of the classical methods to the class of multivariate skew-

normal distributions which has recently been discussed by Azzalini & Dalla Valle (1996).

This distribution represents a mathematically tractable extension of the multivariate nor-

mal density with the addition of a parameter to regulate skewness.

We aim at demostrating that this distribution achieves a reasonable flexibility in real

data fitting, while it maintains a number of convenient formal properties of the normal
one. In particular, associated distribution theory of linear and quadratic forms remains

largely valid.

More specifically, the targets of the paper are as follows: (a) to extend the analysis of the

probabilistic aspects of the multivariate skew-normal distribution, especially when they

reproduce or resemble similar properties of the normal distribution; (b) to examine the

potential applications of this distribution in statistics, with special emphasis on multivari-

ate analysis. Correspondingly, after a summary of known results about the distribution,
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sections 3, 4 and 5 deal with distribution of linear and quadratic forms of skew-normal
variates, and other probabilistic aspects; sections 6 and 7 deal with issues of more direct

statistical relevance, with some numerical examples for illustration. In addition, section 8

sketches an additional level of generalization by introducing a skew variant of elliptical

densities.

2 THE MULTIVARIATE SKEW-NORMAL DISTRIBUTION

We first recall the definition and a few key properties of the distribution, as given by Azza-

lini & Dalla Valle (1996) except for re-arrangement of the results. A � -dimensional random

variable � is said to have a multivariate skew-normal distribution if it is continuous with

density function �������
	��
������������	���� �
	���� � ���
(1)

where
�����
	��
���

is the � -dimensional normal density with zero mean and correlation matrix�
,
��� �!�

is the " �
#��%$&�
distribution function, and

�
is a � -dimensional vector. For simplicity,�

is assumed to be of full rank.

When
�(')#

, (1) reduces to the " �*�
#��
���
density. We then refer to

�
as a ‘shape param-

eter’, in a broad sense, although the actual shape is regulated in a more complex way, as it

will emerge in the course of the paper.

The above density does not allow location and scale parameters. Clearly, these are es-

sential in practical statistical work, but we defer their introduction until later, to keep nota-

tion simple as long as possible.

The matrix

�
and the vector

�
appearing in (1) were defined in Azzalini & Dalla Valle

(1996) as functions of other quantities, namely another correlation matrix + and a vector, �-� �
; hence a member of the parametric family was identified by the pair

� , � + �
. It is in

fact possible to identify the member of the family directly by the pair
���.�
���

; i.e. this pair

provides an equivalent parametrization of the class of densities. The proof of this fact is of

purely algebraic nature, and it is given in an appendix, together with some related results.

For the purposes of the present paper, this parametrization appears preferable and we shall

adopt the notation �0/21�3 �����4�
���
to indicate that � has density function (1).

The cumulant generating function is

5 �768�9'0:<;>=@?A�768�B'DCE 6 � �@6GFH:I;>=KJL�B����M � 68�
N
(2)

where M�' $
�O$PFQ� � �R��� COS E �R�.T

(3)

Hence the mean vector and the variance matrix are

UWV 'YX@J � NZ'[����\^]_� COS E M&�
var

J � NZ'`�(a U_V�U �V T
(4)

The following result provides a stochastic representation of � , useful for computer gen-

eration of random numbers and for theoretical purposes.
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Proposition 1 Suppose that�������� /`" ��� C �
#��
�
	%��� ��	@' � $ M �M � �
where

���
is a scalar component and

� 	
is a correlation matrix. Then

� '�
 �
if
����� #a �

otherwise

is 1�3 �*���4�
���
where � ' $

� $ a M � ��� C M^� COS E � � C M&T
(5)

Also, we shall make repeated use of the Sherman–Morrison–Woodbury formula for

matrix inversion, which states���HF������ � � C '�� � C a�� � C �������2F������ � C ��� � � C ����� � C
(6)

for any conformable matrices, provided the inverses involved exist; see for instance Rao

(1973, exercise 2.9, p. 33).

3 LINEAR AND QUADRATIC FORMS

A key feature of the multivariate normal distribution is its simplicity to handle linear and

quadratics forms. We now explore the behaviour of the skew-normal distribution in these

cases.

3.1 MARGINAL DISTRIBUTIONS

It is implicit in the genesis of the multivariate skew-normal variate, as described by Azzalini

& Dalla Valle (1996), that the marginal distribution of a subset of the components of � is
still a skew-normal variate. In the marginalization operation, the

� , � + �
parametrization

works in a very simple manner, since one only needs to extract the relevant components of,
and + . With the

���4�
���
parametrization, specific formulae must be developed.

Proposition 2 Suppose that � / 1�3 �*���4�
���
and � is partitioned as � � ' � � �C � � �E �

of di-

mensions � and � a � , respectively; denote by

�Y' � � C C � C E� E C � E E � � � ' � � C� E �
the corresponding partitions of

�
and

�
. Then the marginal distribution of � C

is 1�3! ��� C C �#"� C �
,

where "� C ' � C F(� � CC C � C E � E�O$PF(� �E � E E%$ C � E � COS E
� � E E%$ C '`� E E a � E C � � CC C � C E T

The proof follows from straightforward integration, with the aid of Proposition 4 of Azzalini

& Dalla Valle (1996).
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3.2 LINEAR TRANSFORMS

Proposition 3 If �2/)1�3 �����4�
���
, and

�
is a non-singular ��� � matrix such that

� � ���
is a

correlation matrix, then � � �0/21�3 ����� � ��� � � � C ����T

The proof follows from standard rule of transformation of random variables. The above

condition that
� � ���

is a correlation matrix is there for the sake of simplicity of exposition,

and it can be removed; see section 5.

Proposition 4 For a variable �`/ 1�3 �����4�
���
, there exists a linear transform � 	 ' � 	 � such

that � 	 / 1�3 �*��� � �
� 	 �
where at most one component of

� 	
is not zero.

Proof. By using the factorization

� '�� � �
, we first transform � into a variable � '��� � � � C � such that � / 1�3 ����� � ��� ���

. Now consider an orthogonal matrix 	 with one

column on the same direction of

� �
, and define � 	 ' 	 � � which fulfills the conditions.

The above result essentially defines a sort of ‘canonical form’ whose components are

mutually independent, with a single component ‘absorbing’ all asymmetry of the mul-

tivariate distribution. This linear transformation plays a role similar to the one which con-

verts a multivariate normal variable into a spherical form. Further, notice that the com-
ponent transformations of

� 	
are invertible; hence it is possible to span the whole class1�3 �����4�
���

starting from � 	 and applying suitable linear transformations. The density of � 	
is of the form �

�
�
� C ����� � ������� 	� � � �

where � 	� '��L� � ����� COS E
(7)

is the only non-zero component of
� 	

.
For the rest of this section, we examine conditions for independence among blocks of

components of a linear transform � ' � � � . Before stating the main conclusion, we need

the following intermediate result.

Proposition 5 Let �0/21�3 �����4�
���
and

�
is as in Proposition 3, and consider the linear trans-

form

� '��4� � '��� � C
...�  
�� ' ��� � � C

...� � 
����

� (8)

where the matrices

� C � T T TL� �  have � C � T T T%� �  columns, respectively. Then

� � /21�3 ��� ��� � � �
��� � �
where � � � '��Z�� ��� � � � � � ' ��� �� ��� � � � C � �� �R�! $PF(� � ���Qa ��� � ��� �� ��� � � � C � �� ���O�#" COS E
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Proof. Without a loss of generality, we consider the case � '`�
and � ')$

. Write
�`' ��� C � � E �

and denote its inverse by � � C ' � ��� � C��C� � � C��E �
where the number of columns of the blocks of

�
matches the number of rows of the blocks

of
� � C

. Since
��� � C ' � �

, then the identity
� C � � � C��C F � E � � � C��E ' � �

holds. On partitioning� � �
�
in an obvious way, and � � C � ' � ��� � C��C �� � � C��E � � �

the result follows after some algebra by applying Proposition 2 to the parameters of
� � � ,

taking into account the above identity.

We now turn to examine the issue of independence among blocks of a linear transform� � � where

�
satisfies the condition of Proposition 3. To establish independence among

the � � ’s, a key role is played by the
��� �!�

component in (1). Since
����� F��*�

cannot be factor-

ized as the product

�����G�������*�
, it follows that at most one of the � � can be a ‘proper’ skew-

normal variate, while the others must have the skewness parameter equal to 0, hence be

regular normal variates, if mutual independence holds.

Proposition 6 If �0/21�3 �����4�
���
, and

� � ���
is a positive definite correlation matrix, then the

variables

� � C � T T T&� �  � defined by (8) are independent if and only if the following conditions

hold simultaneously:

(a)

� �� ���	� '0#
for ��
'��

,

(b)

� �� �R� 
'0#
for at most one � .

Proof. Prove sufficiency first. By Proposition 3 and condition (a), the joint distribution of� is 1�3 ����� �R�
���P�
where� � '

diag

���4�C ��� C � T T T%� �Z� �
�  ���
�#� ' ���4�9����� � C �4���R� ' ��� ��� � C ��� C � � C � � C �R�

...��� � �
�  � � C � � �R�
���� T

If condition (b) is satisfied too, only one of the blocks of

� �
is not zero. Hence the joint

density can be factorized in obvious manner.

To prove necessity, note that if independence holds the density of � can be factorized as

the product of the densities of the � � ’s, given by Proposition 5. Since the function

�
cannot

be factorized, only one block of
� �

can be not zero, and
� �

must be a block-diagonal

matrix. These requirements can be met only if conditions (a) and (b) are satisfied.

Notice that the parameters of the � � ’s are equal to the corresponding blocks of
��� �@�
�#� �

only if independence holds.
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3.3 QUADRATIC FORMS

One appealing feature of the one-dimensional skew-normal distribution is that the square

of a random variate of this kind is a � E C . This property carries on in the multivariate case

since � � � � C � /�� E� , irrespectively of
�

. These facts are special cases of the more general

results presented below.

Proposition 7 If �0/21�3 �����4�
���
, and

�
is a symmetric positive semi-definite � � � matrix of

rank p such that

� ���['��
, then � � � �0/�� E� .

Proof. Consider first the case of a random variable �)/21�3 � ��� � �
���
. Since � � � ' � � ��� � �

for any orthogonal matrix

�
, hence in particular it holds for a matrix having a column on

the same direction of

�
, i.e. we are considering the canonical form associated to � . It then

follows that � � �[/�� E� independently of
�

.

In the general case, let us write

� ' ? ? �
where

?
is a full-rank � ��� matrix (���� ), and notice that

? � �R? '��
� is equivalent to

� ��� ' �
; to see this, it is sufficient

to left-multiply each side of the latter equality by

��? � ? � � C ? �
and right-multiply by its

transpose. Then � � � � ' � � � where � ' ? � �[/	��" � ��� � �
���@�
for some suitable vector� �

. Therefore the statement holds because � � �)/�� E� .
Corollary 8 If � /21�3 �����4�
���

, and

�
is a full-rank � �
� matrix (���Q� ), then

� � � ��� � � � � � C � � � /�� E� T

Proposition 9 If � /A1�3 �*�����
���
, and

� � is a symmetric positive semi-definite � �-� matrix

of rank � � � � ')$ �
�*� T T T^� � � such that

(a)

� � ��� � '0#
for ��
' �

,

(b)

� � ��� � �R� 
'`#
for at most one � ,

then the quadratic forms � � � � � � � '[$ �
�*� T T TL� � � are mutually independent.

Proof. Similarly to the proof of Proposition 7, write

� � ' ? � ? �� where

? � has rank � � .
Clearly the quadratic forms � � � � � are mutually independent if this is true for the linear

forms

? �� � . It is easy to see that

? �� �R? �H' #
is equivalent to

� �� �
�	�H' #
for � 
' �

;

similarly
? �� �R� 
'0#

is equivalent to
� � ��� � �R� 
'0#

. This completes the proof.

Proposition 10 (Fisher–Cochran) If � / 1�3 �*��� � �
���
and

� C � T T T%� �  are symmetric � �Q�
matrices of rank � C � T T T&� �  , respectively, such that 


� � ' � �
and

� � � 
' #
for at most one

choice of � , then the quadratic forms � � � � � are independent � E� � if and only if 
 � � ' � .

Proof. The proof follows the steps of the usual one of Fisher–Cochran theorem, as given

for instance by Rao (1973, p. 185 ff.), taking into account Proposition 9 for independence

of the quadratic forms, and Proposition 7 as for their marginal distributions.

It would be possible to develop this section via a different approach, on the basis of

Proposition 1. For most of the results, this route would offer a simple treatment, but for
some others it would be quite cumbersome, especially for the results about independence

of components.
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4 CUMULANTS AND INDICES

To study higher order cumulants besides those given in Section 2, we need some prelim-

inary results about the cumulants of the half-normal distribution, i.e. the distribution of� '�� ���
, where

� /0" �
#��%$&�
. Its cumulant generating function is

5�� �768�B' CE 6 E F�� � �76 �
where � � ��� �B' :<;>=G���������G� ��T
For later use, define � � ��� �9'

d
�

d
� � � � ��� � � � ')$ �
�*� T T TI��T

Clearly,
� C ���G�B'2����� � \>�����G�

; the subsequent derivatives can be expressed as functions of the

lower order derivatives, e.g.� E ���G� ' a	� C ���G�
J
��F�� C ���G�
N��
�
�>���G� ' a	� E ���G�
J
��F�� C ���G�
N a�� C ��� �
J $ F�� E ��� �
N���������G� ' a	�
�>���G�
J
��FH��� C ���G�
N a ��� E ���G�
J $ F�� E ��� �
N��

hence as functions of
� C ���G�

. Computation of
� � at

��'0#
gives the corresponding cumulant� �� . Unfortunately, it is not clear how to obtain a closed or recursive formula for the

� � ���G�
’s.

An alternative route for computing � �� is as follows: since
� / �

� E C � COS E then

X@J � � N�' � � S E
� ]�� � � F0$

� �
which admits the recurrence formulaX@J � � N4'[� � a $&� X�� � � � E�� � � ��� ����T

Hence the cumulant � �� can be obtained from the set
X@J ���&NB���(' $ � T T T&� � , using well-

known results; see e.g. Table 2.1.2 of David, Kendall & Burton (1966) for expressions con-

necting cumulants to moments up to order 8. In particular, we obtain for
�

that

� �� '[����\^]_� COS E �� �\^] aQ$&��� � �� '! ����a#"�\^]_� \^]�T

Returning to cumulant generating function (2), its first two derivatives are

d
5 �76 �
d
6 '`�@6GF�� C ���G�OM&�

d
E 5 �76 �

d
6

d
6 � '2� F�� E ���G��M^ML�

where

� ' M � 6
, and its evaluation at

6 'D#
confirms (4). Higher order cumulants are ob-

tained from
d
� 5 �76 �

d
6 � d

6 � � � �
d
6 � '$� � ���G��M � M��B� � ��M �

which needs to be evaluated only at
��'0#

where� � ���G�%� & � � ' � ��
8



which can has been obtained as described above.
One use of these expressions is to obtain summary indicators for the 1�3 �

distribution.

The most popular ones are those introduced by Mardia (1970, 1974) to measure multivari-

ate skewness and kurtosis. In our case, the index of skewness takes the form

� C�� � ' � C�� ��'[� � �� � E�� ���	� ���
��	

��

M � M � M � M � 
 M � 
 M � 
�� � � 
 � ��� 
 � ��� 


' �  a ]
� � E � U �V�� � C UWV � �

where � '`�(a UWV U �V '[� � ��� �
with inverse � � C '[� � ��� �

. Similarly, the index of kurtosis is

� E � � ' � E � �Za � � � F(���B' � �� ����	���
M � M � M � M � � ��� � ���

' ���
] a���� � U �V � � C UWV � E T

There exists an alternative multivariate index of skewness discussed in the literature;

see e.g. McCullagh (1987, p.40). However this differs from � C�� �
only by a different way of

matching the indices of the cumulants, but this has no effect in the present case because

of the special pattern of the cumulants of order higher than 2. Hence, in our case the two

indices of skewness coincide.

Using (6), one can re-write

U �V � � C UWV ' U �V � � C UWV$ a U �V � � C U V
which allows easier examination of the range of U �V�� � C UWV , by considering the range ofM � � � C M

. On using (3), we write

M^��� � C M ' � � �R�
$PF(� � �R� ' �$.F �

where
�

is the square of

� 	� , defined by (7). Since
�

spans � #����Q�
, then

U �V�� � C UWV ' � �]�F`�
]�a ��� �
� � #��
��\��
] a ��� �

and the approximate maximal values for � C�� �
and � E � � are 0.9905, and 0.869, respectively, in

agreement with the univariate case. Since both � C�� �
and � E � � depend of

���4�
���
only via

� 	� ,

this reinforces the role of the latter as the summary quantity of the distribution shape.

5 SOME EXTENSIONS

5.1 LOCATION AND SCALE PARAMETERS

For the subsequent development of the paper, we need to introduce location and scale

parameters, which have been omitted in the expression (1) of the density of � . Write then

� '��RF�� � (9)
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where � '[� � C � T T T&���%�>� � � � '
diag

� � C � T T T%��� �>�
are location and scale parameters, respectively; the components of

�
are assumed to be

positive. The density function of � is�B�����
�

a ���
�����ZJL� � � � C �
�

a � �
N
(10)

where � '��.� V �
is a covariance matrix and, from now on,

� V replaces the symbol
�

used in the previous

sections. Hence, for instance, (3) must now be read with

�
replaced by

� V . We shall use the

notation �[/21�3 ��� ���
�4�
���
to indicate that � has density function (10). In the sequel, we shall also use the notation� �

to denote the diagonal matrix of the square root of the diagonal elements of a positive

definite matrix

�
; hence, for instance,

� ' � �
.

Earlier results on linear and quadratic forms for � carry on for � , apart for some slight

complication in the notation. For instance, for a linear transform

� � � where

�
is a � � �

matrix, a simple extension of Proposition 5 gives� ' � � � /21�3! � � � �
�
�

�
�
�

�
(11)

where �
�

'�� � ��� �
�

' � � ��� � � & ' �
�

� � C
�
� � �! $.F(� � ��� V a�� � � C
�
� � �O�#" COS E

and �
�

'�� �
�

� � ' � � C ��� T
Similar extensions could be given for other results of Section 3. For later reference, we write

the new form of the cumulant generating function

5 �768�B' 6 � ��F CE 6O���@6WF :<;>= JL�B����ML� �96 �
N�T
(12)

5.2 CONDITIONAL DISTRIBUTIONS

Suppose that � has density function (10), and it is partitioned in two components, � C
and� E , of dimensions � and � a � , respectively, with a corresponding partition for

�
,

�
and

�
.

To examine the distribution of � E conditionally on � C '
� C , write

���E ' � E F(� E C � � CC C �
� C a � C ��� � E E%$ C '`� E E a � E C � � CC C � C E � "� C ' � C F�� C � � CC C � C E � � CE � E�O$PF(� �E

"� E E%$ C � E � COS E
�

where � C ' � � C C � � E ' � � E E � "� E E%$ C ' � � CE � E E%$ C � � CE T
Here

� �E and

� E E%$ C are given by the usual formulae for the conditional mean and variance of

a normal variable, and
"� C

is the shape parameter of the marginal distribution of � C
. After
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some straightforward computation, it follows that the cumulant generating function of the
conditional distribution is5 � �768�9' 6O� � �E F CE 6 ��� E E%$ C 6 F(:<;>= ����� � F��ML�E � E 6 ��a :I;>=@����� � �
where � � ' "� � C � � CC �

� C a � C �
and

�M E is computed similarly to (3), with

�
and

�
replaced by

"� E E%$ C and

� E , respectively. This

gives immediatelyXPJ � E � � C N4' � �E F�� C ��� � � � � var

J � E � � C N4'`� E E%$ C F�� E ��� � � ��� � (13)

where �
' � E �M E ; higher order cumulants of order � are of the form� � ��� � � � � � � � � �

� �
� ��� �� terms

� � � � �����

where �
�

denotes the
�

-th component of � .

Clearly,
5 � �768�

is of form (12). This special case occurs only if
� � ' #

; this condition is

essentially equivalent to

"� C '0#
, i.e. � C is marginally normal.

The expression of the conditional density in the general case is easily written down,

namely ��� �  � � E a � �E �
� E E%$ C ���ZJL� �E � � CE �
� E a � �E � F �
	 � N^\>� ��� � �

(14)

where
� 	 � ' ! $PFQ� �E "� E E�� C � E " COS E � � . In the case � a � ' $

, this distribution has been

discussed by several people, including Chou & Owen (1984), Azzalini (1985), Cartinhour
(1990) and Arnold et al. (1993). From (14), it is easy to see that conditions for independence

among components are the same of the unconditional case, with
� E E%$ C and

� E replacing
�

and

�
, confirming again the usefulness of the adopted parametrization.

The shape of (14) depends on a number of ingredients; however, for most cases, the plot

of this density function displays a remarkable similarity with the one of the skew-normal

density. This similarity suggests the approximation of the conditional density by a skew-

normal density which matches cumulants up to the third order.

The resulting equations allow explicit solution, except for extreme situations when the

exact conditional density has an index of skewness outside the range of the skew-normal

one; these unfeasible cases are very remote. In the overwhelming majority of cases, the

equations can be solved, and the approximate density is close to the exact one. Figure 1
shows the contour levels of the two densities for two combinations of parameter values

when � a � ' �
; the left panel shows one of the worst cases which have been observed,

while the right panel displays a much better, and also more frequently observed, situation.

Besides the generally small numerical discrepancy between the approximate and the

exact density, the following two properties hold.


 Independence is respected. If two components of � E are independent conditionally on� C '
� C with respect to the exact conditional density, so they are with respect to the

approximate one, and vice versa.


 Interchange of marginalization and conditioning. Integrating out some components

of � E after conditioning produces the same result of integration followed by condi-
tioning. This fact is obvious when using the exact density; it still holds for the ap-

proximate one.
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Figure 1: Contour levels of the exact (dashed lines) and approximate (continuous lines) conditional
density of a multivariate skew-normal variable, plotted for two sets of values of the parameters and
of the conditioning variable

To prove the first statement, denote by
� � ��� �

a partition of set of indices composing � E .

Conditional independence of ��� and ��� implies that

� E E%$ C is block diagonal and that one

of the two components, ��� say, has no skewness; hence
�M
�

' #
and � �

' #
. Therefore all

off-diagonal blocks composing the variance in (13) are 0, and the same structure must hold

in the matching quantity of the approximating distribution. The converse statement can
be proved similarly. To prove the second statement, simply notice that the approximation

preserves exact cumulants up to the third order, which uniquely identify a member of the

SN family; hence also the cumulants of the marginal distribution are preserved up to the

same order.

The degree of accuracy of the approximation jointly with the above two properties sup-

port routine use of the approximate conditional density in place of the exact one. In this

sense, we can say that the skew-normal class of density is closed with respect to the condi-

tioning operation.

6 STATISTICAL ISSUES IN THE SCALAR CASE

6.1 DIRECT PARAMETERS

Starting from this section, we switch attention to inferential aspects, and other issues of

more direct statistical relevance, initially by considering univariate distributions.

Some of the issues discussed in this subsection have a close connection with the prob-

lem considered by Copas & Li (1997) and the sociological literature on Heckman’s model

referenced there; see also Aigner et al. (1977) and the literature of stochastic frontier mod-
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els.
In the univariate case, write � / 1�3 � ����� E �
���

, dropping the subscript � for simplicity.

If a random sample �
' �
� C � T T T&� ��� � � is available, the loglikelihood function for the direct

parameters
� 	 '[� ����� �
���

is

� � � 	 �9'[a���:<;>=�� a CE 	���	 F � � � � ��� 	 � � (15)

where
	 ' � � C �

�
a ��$ � � and

	 � denotes its � -th component; here
$ � is the

� � $
vector of all

ones. We shall denote by �
�

the maximum likelihood estimate (MLE) of
�

, and similarly for

the other parameters. The likelihood equations are immediately written down, namely

� 	 � a � �
� C � '0#��

� 	 E� a � �
� C � 	 � a�� '`#��

�
� C � 	 � '0#

where � C � ' � C ��� 	 � � . There are however two sort of problems with this parametrization.

Firstly, there is always an inflection point at
� '0#

of the profile loglikelihood. Correspond-

ingly, at

�('[#
, the expected Fisher information becomes singular. This phenomenon is a

special case of the problem studied in greater generality by Rotnitzky et al. (1999).

In addition, the likelihood function itself can be problematic; its shape can be far from

quadratic even when

�
is not near 0. This aspect is clearly illustrated by the plots given by

Arnold et al. (1993) who have analysed a dataset of size 87, later referred to as the Otis data;

see also Figure 2, which refers to the same data.

For evaluation of the MLE, gradient-based methods have been considered, but better

results were obtained using the EM algorithm, with the introduction of a fictitious unob-

served variable which is essentially
� � � �

of Proposition 1. This method works satisfactorily,

at least when the initial values are chosen by the method of moments. As typical for the

EM algorithm, reliability rather than speed is its best feature. Methods for accelerating the

EM algorithm are available; see for instance Meng & van Dyk (1997) and references therein.

However, we prefer to expand in greater detail the discussion of another approach, for the

reasons explained in the next subsection.

6.2 CENTRED PARAMETERS

To avoid the singularity problem of the information matrix at

� ' #
, Azzalini (1985) has

reparameterized the problem by writing

� ' U F � �	� �

where �
� ')� � a UWV � \ � V � � V ' ! $ a U EV " COS E �
and considering the centred parameters

� 	 ' � U � � � � C �
instead of the DP parameters.

Here � C is the usual univariate index of skewness, which is equal to the square root of the

multivariate index of skewness of Section 4, taken with the same sign of

�
. Clearly, there is

the correspondence � ' U a � � � CV UWV � � ' � � � CV T

13
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Figure 2: Twice relative profile loglikelihood of � (left) and contour levels of the similar function of����� �
	 (right) for the Otis data, when the direct parametrization is used

In the case of a regression problem, write
X@J � � N4'$� �� � , where

� � is a vector of � covari-

ates and
�

is vector parameter. The corresponding loglikelihood is then

� ��� 	 �9' ��:<;>= � � V \ � ��a CE 	 � 	ZF � � � ��� 	 � �
where 	 � ' UWV F � V � � C � � � a�� �� ���B' UWV F � V � � � 	 '[�
	 C � T T T%�8	 � � � T
In case we wanted to reformulate the regression problem in terms of direct parameters,

then only the first component must be adjusted, namely����
C ' ���

C a � UWV \ � V
in a self-explanatory notation.

The gradient and the Hessian matrix of the loglikelihood in the CP parametrization

are more involved than with the DP parametrization, and we confine the details in an ap-

pendix. The effects of the reparametrization are however beneficial in various respects and

worth the algebraic complications, for the following reasons.


 The reparametrization removes the singularity of the information matrix at
� ' #

.

This fact was examined numerically by Azzalini (1985), and checked by detailed ana-
lytic computations by Chiogna (1997).


 Although not orthogonal, the components of CP are less correlated than those of DP,
especially U and the � C . This fact can be checked numerically with the aid of the

expressions given in an appendix.
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Figure 3: Twice relative profile loglikelihood of ��� (left) and contour level of the similar function of�
	 � � � 	 (right) for the Otis data, when the centred parametrization is used


 The likelihood shape is generally much improved. This is illustrated by Figure 3,
which refers to the same data of Figure 2; the left panel refers to twice the relative

profile loglikelihood for the new shape parameter � C
, and the right panel refers to

the pair

� � � � C � . There is a distinct improvement over the earlier figure, in various

respects:

� the inflection point at
� '0#

of the first panel of Figure 2 has been removed, with

only a mild change of slope at � C '0#
left;

� the overall shape of the profile loglikelihood has changed into one appreciably

closer to a quadratic shape;
� near the MLE point, the axes of the approximating ellipsis are now more nearly

alligned to the orthogonal axes than before.


 Simulation work, whose details are not reported here, showed that the marginal dis-

tribution of �
�

can be bimodal when
�

and
� � �

are small or moderate; for instance it

happens with

� '
� #
, sampling from 1�3 �
#�� $ �_$&�

. Such an unusual distribution of the

MLE is in qualitative agreement with the findings of Rotnitzky et al. (1999). Again,

this unpleasant feature disappeared with the CP parametrization, in the sense that

the distribution of the new location parameter �U exhibited a perfectly regular beha-

viour.

The advantages of CP over DP are not only on the theoretical side but also practical,
since the more regular shape of the loglikelihood leads to faster convergence of the nu-

merical maximization procedures when computing the MLE.
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Figure 4: Simulated data points (small circles) leading to �� ��� , with nonparametric density
estimate (dashed curve) and parametric curve with � �����	��
 (continuous curve)

For numerical computation of the MLE, we have obtained satisfactory results by ad-

opting the following scheme: (i) choose initial values by the method of moments; (ii) op-

tionally, improve these estimates by a few EM iterations; (iii) obtain the MLE either by

Newton–Raphson or by quasi-Newton methods. Only in a few cases, the third stage did

not converge; full EM iteration was then used, and this always led to convegence.

The set of S-Plus routines developed for these computations, as well as those related to

the problems discussed later, will be made freely available on the WorldWideWeb.

6.3 ANOMALIES OF MLE

Notwithstanding what is stated near the end of the previous subsection, there are still cases

where the likelihood shape and the MLE are problematic. We are not referring here to

difficulties with numerical maximization, but to the intrinsic properties of the likelihood

function, not removable by change of parametrization.

An illustration is provided by Figure 4; here 50 data points, sampled from 1�3 �
#��%$ � ���
,

are plotted on the horizontal axis, together with a nonparametric estimate of the density

(dashed curve) and another (continuous) curve representing a skew-normal density. This

parametric curve has
� '
�*TI$
 

but it is not the one of the MLE, however: the MLE has� ' �
, which corresponds to the half-normal density.

This divergence of �
�

(or equivalently �� C�� #�T���� �>���
, its maximal value) looks rather sur-

prising, since apparently there is nothing pathological in the data pattern of Figure 4; the

sample index of skewness is 0.9022, which is inside the feasible region of � C
. Similar situ-

ations occur with a non-negligible frequency when

�
is small to moderate, but they disap-

pear when
�

increases.
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The source of this sort of anomaly is easy to understand in the one-parameter case with�
and

�
known;

� ' #
,

� ' $
, say. If all sample values have the same sign, the final term

of (15) increases with �
�

, depending the sign of the data but irrespective of their actual

values, as it has been remarked by Liseo (1990). For instance, if 25 data are sampled from1�3 �
#��%$ � ���
, the probability that they are all positive is about 0.20.

When all three DP parameters are being estimated, the explanation of this fact is not so

clear, but it is conceivable that a similar mechanism is in action.

In cases of this sort, the behaviour of the MLE appears qualitatively unsatisfactory, and

an alternative estimation method is called for. Tackling this problem is beyond the scope

of the present paper, however. As a temporary solution we adopted the following simple

strategy: when the maximum occurs on the frontier, re-start the maximization procedure

and stop it when it reaches a loglikelihood value not significantly lower than the maximum.
This was the criterion used for choosing the parametric curve plotted in Figure 4; in this

case the difference from the maximum of the loglikelihood is 2.39, far below the 95% signi-

ficant point of a � E� \ � distribution.

The above proposal leaves some degree of arbitrariness, since it does not say exactly

how much below the maximum to stay. In practice the choice is not so dramatic, because

the boundary effect involves only
�

, and when this is large,
� � � #

say, the actual shape

of the density varies very slowly. Moreover, in the numerical cases which have been ex-

amined, the loglikelihood function was very flat only along the
�

-axis, while it was far more

curved with along the location and scale parameters which were then little affected by the

specific choice of

�
, within quite wide limits.

7 APPLICATIONS TO MULTIVARIATE ANALYSIS

7.1 FITTING MULTIVARIATE DISTRIBUTIONS

In the case of independent observations
�
� C � T T T&� ��� � sampled from 1�3 �*� � � �
�4�
���

for � '$ � T T T&� �
, the loglikelihood is

� ')a CE ��:I;>=�� � �^a CE � tr
��� � C � �WF � � � � JL� � � � C �

� � a � � �
N (16)

where � ' � � C � � �
� � a � � � � � � a � � �O� T

The location parameters have been considered to be different having in mind a regression

context where
� � is related to � explanatory variables

� � via� �� ' � � �B� � � ')$ � T T TL� �_���

for some � � � matrix

�
of parameters.

It would be ideal to reproduce in this setting the centred parametrization introduced

in the scalar case. This approach poses difficulties, and we follow a different direction to

obtain the MLE. Once the estimates have been computed, they could be converted com-

ponentwise to the centred parameters.

The letters � ,
�

,

�
will denote the matrices of size

� � � ,

� � � and

� � � containing the
� � ’s, the

� � ’s, and the
� � ’s, respectively. Also, a notation of type

� � �
	��
represents the vector

obtained by applying the function

� � � �!�
to each element of the vector

	
.
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Regarding �
' � � C �

as a parameter in replacement of
�

separates the parameters in
(16) in the following sense: for fixed

�
and � , maximization of

�
with respect

�
is equivalent

to maximizing the analogous function for normal variates for fixed
�

, which has the well

known solution
�
� � ���B' ��� ���.' � � C � � �

where

� ' �
�

a � ���
. Replacing this expression in

�
gives the profile loglikelihood

� 	 � �B�
�
�.')a CE ��:<;>=�� � � ���%�>a CE � � F`$%�� � � ��� �

�
with substantial reduction of dimensionality of the maximization problem. Numerical

maximization of
� 	

is required; this process can be speeded up substantially if the partial

derivatives � � 	� � ' � � ��� � ��� � C a � � � C ��� �
�

�
�P�

� � 	�
�

' � � � C ��� �
���

are supplied to a quasi-Newton algorithm. Upon convergence, numerical differentiation

of the gradient leads to approximate standard errors for

�
and � , hence for

�
after multi-

plication by
�

.

The above computational scheme has been used satisfactorily in numerical work with

non-trivial dimensions of the arrays
�

, � ,
�

. A very simple illustration is provided by Fig-

ure 5 which refers to a subset of the AIS (Australian Institute of Sport) data examined by

Cook & Weisberg (1994), which contains various biomedical measurements on a group of

Australian athletes; we then have � '  
, �

' $
,
�(' � #��

. Figure 5 displays the scatter plot
of each pair of the four variables considered superimposed with the contour lines of the

marginal density obtained by marginalization of the fitted 1�3 � density.

Visual inspection of Figure 5 indicates a satisfactory fit of the density to the data. How-

ever, to obtain a somewhat more comprehensive graphical display, consider the Mahalan-

obis distances � � '[�
� � a � � � � � C �

� � a ����� � � '[$ � T T T&� �_���
(17)

which are sampled from a � E� if the fitted model is appropriate, by using Proposition 7. In

practice, estimates must be replaced to the exact parameter values in (17). The above

� � ’s
must be sorted and plotted versus the � E� percentage points. Equivalently, the cumulat-
ive � E� probabilities can be plotted against their nominal values

$&\ ���
��\ ��� T T T^�%$
; the points

should lie on the bisection line of the quadrant. This diagnostic method is a natural ana-

logue of a well-know diagnostics used in normal theory context (Healy, 1968).

Figure 6 diplays the second variant of this plot for the AIS data, in its right-hand side

panel; the left-hand side panel shows the similar traditional plot under assumption of

normality. Comparison of the two plots indicates a substantial improvement of the skew-

normal fit over the normal one.

A similar conclusion is achieved by considering a parametric test for normality which

is provided by the likelihood ratio test for the null hypothesis
� '0#

, that is��J � � ���� ����
�
����a � � �U �

�� �8# �
N
where

�
�U �
�� �

denote the MLE of

� �*�
� �
under the assumption of normality. The observed

value of the test statistics in the above example is over 103, and the associated value of the

� E� distribution function does not even need to be computed.
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Figure 5: Scatterplots of some pairs of the AIS variables and contour levels of the fitted distribution
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Figure 6: Healy’s plot when either a normal distribution (left panel) or a skew-normal distribution
(right panel) is fitted to the AIS data

7.2 DISCRIMINANT ANALYSIS

The results of Section 3, once reinterpreted in the more general setting introduced in Sec-

tion 5, provide tools to examine the behaviour of many classical multivariate techniques,
when based on linear transforms of the data, in the more general context of 1�3 variables.

For the present discussion, however, we shall restrict ourselves to a rather simple problem

of discrimination between two populations, under the traditional hypothesis that they dif-

fer only in the location parameters.

If � � / 1�3 ��� � � �
�4�
���
denote the random variables associated to the two populations

( � '[$ �
�
), then the likelihood-based discrimination rule allocates a new unit with observed

vector � to population 1 if� � C a � E � � � � C �
�

a CE � � C F � E � �WF�� � ��� C �9a#� � ��� E � FH:<;>= �
] C \^] E � � #
(18)

where
� � '�� � � � ��' � � � � C �

�
a � � � and

] � is the prior probability of the � -th population

( � '[$ �
�
).

Nonlinearity of the left-hand side of the above inequality prevents explicit solution.

However, some properties can be obtained; one is that the likelihood-based discriminant

function is a linear function of � when either of the following conditions holds:� � C a � E � � � � C �-'`#��
(19)� � C � '

�
� � C � � C a � E � (20)

where � ia non-zero scalar constant. The proof is omitted.
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The natural alternative to (18) is the Fisher linear discriminant functions, whose com-
monly used expression is� U C a U E �O� � � C ! � a CE � U C F U E � " FH:<;>=G�
] C \^] E � � #��

using a self-explanatory notation; in the present case, this can be re-written as� � C a � E � � ���(a � UWV�U �V �P� � C ! � a CE � � C F � E FQ� � UWV � "@FH:<;>= �
] C \^] E � � #�T
(21)

Proposition 11 When condition (19) holds, the discriminant rules (18) and (21) coincide.

Proof. First, notice that (19) implies that

� C � � � ' � E � � � in (18). Next, use (6) to invert���(a � UWV U �V �P�
in (21), leading to� � C a � E �O�9� � C �

�
a CE � � C F � E ��a � U V � � #�T

Then, on using (19) again and noticing that the vectors
� � C � U V and

� � C �
have the same

direction, one obtains the result.

In the general case, (18) and (21) can only be compared numerically. The various cases

considered differ for the relative positions of the locations parameters, while the other

parameters have been kept fixed; specifically, we have set � ' �
,
] C ' ] E ,

� ' � E ,
�

equal to the correlation matrix with off-diagonal elements equal to 0.4,

� ' � �*����� �
, and� � C a�� E � E 'A$

. This choice of the parameters, such that
�

is an eigenvector of
�

, has been

made for the sake of simplicity, in the following sense. It turns out that the quantities reg-
ulating the basic behaviour of the classification rules are the angle � C between the vectors� � C �

and
� C a � E , and the angle � E between

� � C �
and

� � C � � C a�� E � . The above choice of
�

and

�
makes it easier to choose values of

� C a � E fulfilling conditions (19) and (20), i.e. such

that �
;��

� C '0#
and �

;��
� E ')$

.

Figure 7 shows the relevant entities for a few cases. Each panel of the figure displays

the contour levels of the two population densities with superimposed the separation lines

of the two discriminant rules. The bottom-right panel corresponds to a case satisfying

(19) and only one discrimination line is then visible; the top-right panel corresponds to

fulfilling (20) and the two discriminant lines are parallel.

Table 1 contains summary values of the numerical work, in particular misclassification

probabilities, for a larger number of cases. For the Fisher rule, classification probabilit-
ies can be computed exactly with the aid of (11); for (18), the corresponding probabilities

have been evaluated by simulation methods, using 100000 replicates for each case. The

main qualitative conclusions from these figures are as follows: (a) the total misclassifica-

tion probability is lower for the likelihood-based rule than for the Fisher linear discrimin-

ant, as expected from known results (Rao, 1947); (b) the Fisher rule is however not much

worse than the other one, and its two components are more balanced that the analogous

ones of the likelihood-based rule, which could be considered as an advantage on its own;

(c) for some values of � C and � E , the fraction of cases which are classified differently by

the two rules is not negligible; hence the choice of the method can be relevant even if the

probabilities of misclassification are similar.

For numerical illustration, we have applied the two discriminant rules to the same sub-
set of the AIS data used in subsection 7.1. The individuals were divided by sex, obtaining

two groups of 102 male and 100 female athletes, respectively, and prior probabilities were
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Figure 7: Contour plots of four pairs of ����� variables, with likelihood discriminant function (con-
tinuous line) and Fisher linear discriminant function (dashed line)
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� C�� � C�� � E � � E � �
	

�
;��

� C �
;��

� E
0.35 0.23 0.10 0.28 0.84 1.000 1.000

0.35 0.23 0.11 0.28 0.85 0.907 0.981

0.34 0.23 0.13 0.27 0.87 0.719 0.924

0.31 0.23 0.16 0.26 0.89 0.530 0.831

0.29 0.24 0.19 0.26 0.91 0.394 0.707

0.27 0.25 0.21 0.26 0.92 0.275 0.556

0.26 0.26 0.24 0.26 0.94 0.175 0.383

0.26 0.26 0.25 0.26 0.96 0.085 0.195
0.26 0.26 0.26 0.26 1.00 0.000 0.000

0.25 0.26 0.26 0.26 0.96 -0.085 -0.195

0.24 0.26 0.26 0.26 0.94 -0.175 -0.383

0.21 0.26 0.27 0.25 0.92 -0.275 -0.556

0.19 0.26 0.29 0.24 0.91 -0.394 -0.707

0.16 0.26 0.31 0.23 0.89 -0.530 -0.831

0.13 0.27 0.33 0.23 0.87 -0.719 -0.924

0.10 0.28 0.35 0.23 0.85 -0.907 -0.981

0.10 0.28 0.35 0.23 0.84 -1.000 -1.000

Table 1: Classification probabilities of likelihood-based and Fisher linear discriminant rules. The
entries are: � ��� , misclassification error probability using likelihood based rule, when sampling
from population 1; � ��� , misclassification error probability using Fisher linear discriminant func-
tion, when sampling from population 1; � ��� and � ��� are similar quantities in the case of sampling
from population 2; �	� , probability that the discriminant rules coincide; 
 � and 
 � are angles associ-
ated to the relative position of the location parameters, as described in the text
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Actual groups
Allocated groups � C � E �

�
�
�

� C
55, 55 5, 5 2, 2 0, 0

� E 2, 2 36, 37 2, 4 0, 0
�
�

0, 0 0, 0 22, 20 10, 11

�
�

0, 0 3, 2 14, 14 67, 66

Total 57 44 40 77

Table 2: Discrimination of the four groups of the hepatic data; the data indicate the number of
individuals classified by likelihood rule (first entry) and by the Fisher discriminat function (second
entry)

set equal to the observed frequencies. In this case � C ' $ T �  �#  K$
radians, a situation not so

far from the one associated with (19), i.e coincidence of the two discriminant functions.

In fact the total number of misclassified subjects differs only for one unit: more precisely

Fisher rule fails in three units, while the likelihood-based one fails in two. Further numer-

ical work has been done using data reported by Albert & Harris (1987, chapter 5), fairly

often used for illustration in the context of discriminant methods. An overall sample of

218 individuals affected by liver problems are divided into four groups, corresponding to

severity of their status: acute viral hepatitis (group � C
, 57 patients), persistent chronic hep-

atitis ( � E , 44 patients), aggressive chronic hepatitis ( �
�
, 40 patients), and post-necrotic cir-

rhosis ( �
�
, 77 patients). Albert & Harris (1987) construct a discrimination rule based on

data on three of four available liver enzymes: aspartate aminotransferase (AST), alanine

aminotransferase (ALT) and glutamate dehydrogenase (GLDH); the data have been log-

arithmically transformed because of extreme skewness in the original variables. To ease

comparison, we employed the same variables and applied the same data transformation.

Goodness-of-fit and graphical diagnostics, along the lines of subsection 7.1, confirm

the adequacy of the skew-normal distribution in modeling this set of variables. Prior prob-

abilities were set equal to the observed frequencies, i.e.
] C '`#�T ��"

,
] E '2#�T � #

,
] ��'2#�TI$ �

and] � ' #�T
� �
. The summary results, shown in Table 2, indicate a slight improvement using

the SN distribution instead of the normal one, in the sense that 3 data points which were
incorrectly classified by the Fisher rule are now correctly classified, and only one is moved

in the reverse direction.

7.3 REGRESSION AND GRAPHICAL MODELS

Graphical models are currently a much studied research topic. This subsection examines

some related issues when the assumption of normal distribution of the variable is replaced

by (1). We adopt Cox & Wermuth (1996) as a reference text for background material.

In the construction of a graphical model of normal variables, a key ingredient is the
concentration matrix, i.e. the inverse of the covariance matrix, possibly scaled to obtain

unit diagonal elements. When the
� � � �*� -th entry of the concentration matrix is 0, this indic-

ates that the two corresponding components, � � and � � say, are independent conditionally

on all the others. The associated concentration graph has then no edge between � � and � � .
The results of sections 3 and 5 enable us to transfer the above scheme in the context

of skew-normality; consider in particular Proposition 6 and expression (14). Hence, two
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components, � � and � � say, of �[/21�3 ��� ���
�4�
���
are independent conditionally on the others

if the

� � � ��� -th entry of

� � C
is zero and at most one of

� � and

� �
is different from zero. Hence� � C

plays a role analogous to the concentration matrix in normal theory context, but also�
must be considered now.

Building a graphical model from real data involves to follow essentially the strategy

presented by Cox & Wermuth (1996) for the normal case. The main difference is in the

distinction between regression and conditioning, which are essentially coincident in the

normal case but not here.

Since it seems best to illustrate the actual construction of a graphical model in a specific

example, we consider the data analysed by Cox & Wermuth (1996, chapter 6), concerning

68 patients with fewer than 25 years of diabetes. This dataset is of rather small sample size

for an adequate fitting of a multivariate SN distribution, but it has been adopted here be-
cause it is a ‘standard’ one in this context. For each patient, eight variables are recorded;

of these, glucose control ( � ) and knowledge about illness (
�

) are the primary response

and the intermediate response variables, respectively; the special role of these two vari-

ables drives the subsequent analysis. Of the other variables, � ,

�
and

�
are explanatory

variables regarded as given, with

�
and

�
binary; � ,

�
and

�
are other stochastic vari-

ables. See the above reference for a full description of the variables and some background

information.

A preliminary analysis, using the methods described at the end of subsection 7.1, shows

the presence of a significant skewness in the distribution of some of the variables; this

is largely due to the
�

component but not only to this one. Therefore, we introduce a

multivariate regression model of type� � � � � � � �P� � � /21�3�� � ���
�4�
���

where

�
is a linear combination of

�O$ �
�

� � � � �
, and

�
and

�
are constant across individu-

als. Fit of the above model, using the algorithm described in section 7.1, led to a boundary

solution, in the sense that the components of �
�

diverged. Adopting the simple method

described in section 6.3 to handle these cases, a set of parameters has been chosen inside

the parameter space having a loglikelihood value about 7.7 units lower than the maximum,

which is a very minor loss in consideration of the large number of parameters being estim-
ated.

Table 3 gives the partial correlation matrix, �
� 	

, which is �
� � C

after scaling to obtain unit

diagonal entries and changing signs of the off-diagonal entries, and the shape parameters

with standard errors and

6
-ratios.

Because of the different role played by the variables in the present problem, the most

relevant entries of Table 3 are those of the first two rows of
� 	

. Joint inspection of both

components of Table 3 indicates conditional independence of

� � � � �
,

� � � ���
and

� � � � �
,

while there is conditional dependence between
� � � � �

and between
� � � � �

. Moreover the

results concerning the regression component suggest dropping

�
from the model.

Additional numerical work not reported here has been carried out to examine the sens-

itivity of the results to the choice of the point where the MLE iteration sequence was stopped.
The overall conclusions are as follows: the regression coefficients and their observed sig-

nificances are stable over a wide range of stopping points; the individual components of

�
�

are not so stable, but the overall significance of the test for normality described at the

end of Section 7.1 remains well below 1%. The instability of the components of �
�

is not
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�
� 	 ' ������

� � � � �
� $ aR#�T  �� #�T #�� aR#�TI$
" #�T # "� aR#�T  �� $ a�#�T
��� aR#�T #  #�TI$ �
� #�T #�� aR#�T
��� $ #�T  � aR#�T � �� aR#�TI$
" aR#�T #  #�T  � $ aR#�T #��� aR#�T # " #�TI$ � a�#�T � � aR#�T #�� $ T #>#

�������

Y X Z U V

�
�

1.53 -32.89 -3.49 -1.16 -2.41

std.error 6.4 11.68 2.89 7.27 2.706
-ratio 0.24 -2.81 -1.21 -0.16 -0.89

Table 3: Matrix �� � , �� and other quantities associated to the regression analysis of
������� ��� �����	� 	 on� � �	
 �	� �	� 	 for the glucose data

�
� 	 ' �� � � �� $ T #># aR#�T � # #�T #>#� aR#�T � # $ T #># a�#�T �>�

� #�T #># aR#�T �>� $ T #>#
�� Y X Z

�
�

2.50 -21.42 -1.43
std. error 1.23 5.15 1.526

ratio 2.04 -4.16 -0.94

Table 4: Matrix �� � , �� and other quantities associated to the regression analysis of
������� ��� 	 on� � �	
 �	� 	 for the glucose data

surprising considering that the sample size,
� '$"��

, is small in this context, as discussed in
Section 6.3.

Reduction of the model, dropping components because of the non-significant coeffi-

cients or because of their irrelevance to the variables of interest, leads to consideration of

the triplet
� � � � � � �

with explanatory variables
�O$ �
�

� ���
. The new matrix �

� 	
and the vector

�
�

are as reported in Table 4.

The final graphical model has an edge between

� � � � �
and between

� � � � �
to represent

conditional dependence, for fixed values of
��� �

�
�

as indicated by �
� 	

and �
�

in Table 4;

background information can be used to choose a direction on these arcs. Additional arcs

are added from the fixed variables to the stochastic ones with the aid of the estimates and

related
6
-ratios obtained from the last regression analysis, namely directed arcs between��� � � �

, and

�
�

� � �
.

The pictorial representation of the graphical model is similar to the regression graph of

Figure 6.4 of Cox & Wermuth (1996, p. 141), except for the arcs for they added on the basis of

univariate regressions. Clearly, the building procedures and the associated interpretations

are a bit different, and the two types of arcs (arising from conditional dependence and from

regression) should be kept graphically distinct in our case.

We stress again that the above discussion intended to illustrate the use of the condi-

tional independence techniques with the aid of a well-known dataset, not to produce a

full data analysis. Moreover, the estimation method presented in Section 7.1 must be used

with caution with small samples like this one.
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8 AN EXTENSION TO ELLIPTICAL DENSITIES

The univariate skew-normal distribution was obtained by applying a skewing factor to the

standard normal density, but the same method is applicable to any symmetric density, as

stated in Lemma 1 of Azzalini (1985). This lemma can be extended to the � -dimensional

case where the notion of symmetric density is replaced by the notion of elliptical density.

The following lemma is a direct generalization of Lemma 1 of Azzalini (1985), of which it
also follows the same line of argument in the proof.

Lemma 12 Denote by
�

a continuous random variable with density function �
	

symmet-

ric about 0 and by � ' � � C � T T T&� � �>� � a continuous random variable with density function�
, such that

�
and � are independent. Suppose that the real-valued transform �

� � �
has

symmetric density about 0. Then
�� � � �B'2� � � � � �

�
�

�
�
� �

(22)

is a � -dimensional density function.

Proof. Since
� a

�
� � �

is symmetric about 0, thenCE '�� J � � � � � �
N4'YX��4J�� J � � � � � �%� � N NZ'����	�
�

�
�

�
�
� � � � � � �

�
T

Corollary 13 Suppose that
�

and � satisfy the conditions of the above lemma, and in ad-

dition that � has elliptical density centred at the origin; if

�
� � �B' � C � C F � � �>F � � � �4' � � � (23)

then (22) is a � -dimensional density function for any choice of
�

.

Proof. The statement follows by noticing that
� � � has 1-dimensional elliptical distribu-

tion, i.e. its density is symmetric about 0. See Theorem 2.16 of Fang, Kotz & Ng (1990) for
the distribution of a linear transform of elliptical variables.

Clearly, (22) with �
�
�
�

of type (23) includes the 1�3 �
density for suitable choice of

� � �
and any choice of

�
.

In principle, Lemma 12 can be applied also to non-elliptical densities. For instance, if�[/21�3 �
and

�
is chosen suitably, according to Proposition 3, the density of � can be made

normal, hence symmetric. There is however a major difference: in this case, the property

holds for specific choices of
�

depending on the given choice of
�

, while with the elliptical

densities it holds for all
�

’s.

Implicit in the proof of the lemma there is an acceptance–rejection idea, hence a con-

ditioning argument, similar to the one of Azzalini (1986), leading to the following method

for random number generation. If
�

and � are as in above lemma, and

� ' 
 � if
��


�
� � �

,a � if
� �

�
� � �

,

then the density function of � is (22). In fact, its density at point

	
is� �
	�� �

�
�

�
	�� � F � �OaR	��
J $Ra
�

�
�

�OaR	�� �
N
which is equal to

� � �
	�� �
�
�

�
	�� �
if
� �
	��B' � �Oa�	��

, a condition fulfilled e.g. by elliptical dens-

ities centred at 0.
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9 FURTHER WORK

Various issues related to the SN family have been discussed, but many others remain pending.

Broadly speaking, these fall in two categories: open questions and further applications.

Among the open questions, the anomalous behaviour of MLE in cases described in

section 6.3 is worth exploration even per se. In the multivariate case, construction of more

accurate standard errors would be welcome. A more radical solution would be the intro-
duction of the centred parametrization which has not been carried on from the univariate

to the multivariate case.

Besides applications to numerically more substantial applied problems than those dis-

cussed here, it is worth exploring the relevance of the distribution in other areas of mul-

tivariate statistics, in addition to those touched in section 7. A natural aspect to consider

is the behaviour of other linear statistical methods outside normality, not only discrimin-

ant analysis. Another relevant use could be in connection with sampling affected by bias

selection; this has been discusses by Copas & Li (1997) and references quoted therein, in

the case of a scalar response variable. The skew-normal distribution offers the framework

for a multivariate treatment of the same problem, by consideration of its genesis via con-

ditioning.
The generalization to skew-elliptical densities has been left completely unexplored. An

adequate treatment of the connected distributional and statistical issues requires the space

of an entire paper. Hence, this direction has not been explored here, but a brief mention

seemed to be appropriated, partly because of its close connection with the SN distribution.
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APPENDICES

TWO EQUIVALENT PARAMETRIZATIONS

We want to show that the
�����
���

parametrization adopted in this paper is equivalent to the� , � + �
parametrization of Azzalini & Dalla Valle (1996).

The matrix
�

and the vector
�

appearing in (1) were defined in Azzalini & Dalla Valle

(1996) in terms of a correlation matrix + and a vector
, ' � , C � T T T%� , �>� �

; specifically, they
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defined � '
diag

� ! $.F , E C " � COS E � T T TL� ! $PF , E� " � COS E � �
(24)� ' � � + F , , � � � �
(25)� ' ��$PF , � +

� C , � � COS E � � C + � C , T
(26)

Also, they defined
M�'[��M C � T T T&�
M �>� �

where
M � ' , � ��$.F , E� � � COS E

for
� '[$ � T T T&� � .

With some algebraic work, it can be shown that (25) and (26) are invertible, obtaining

+ ' � � C ���Qa M^M � � � � C
(27)

and (3), which then gives
,

using
, ��'`M�� � $ a M E� � � COS E

. As a by-product, (5) is obtained.

Clearly, for any choice of the

� , � + �
pair, we obtain a feasible

���4�
���
pair; hence, we must

only show the following.

Proposition 14 For any choice of the correlation matrix

�
and of the vector

�Q� � �
, (1) is a

density of 1�3 �
type.

Proof. Given

�
and

�
, compute

M
using (3). This vector must satisfy condition

� a M^M � � #
,

required by (27); hence we must check that�(a �O$PF(� � �R��� � C �R� � � � � #�T

By using (6), the left-hand side can be seen to be equal to
��� � C F(� � � � � C

which is positive

definite. Moreover, fulfillment of

� a�M^M � � #
implies that all components of

M
are less than

1 in absolute value. Algebraic equivalence of (24)–(26) and (3), (27) completes the proof.

GRADIENT AND HESSIAN OF THE CENTRED PARAMETERS

The partial derivatives of
� ��� 	 �

defined in Section 6.2 with respect to

� �B� � � , �
are� �� � ' � � V \ � � E � �PJ

�
a � � a � � � CV � , � C a UWV $ � �
N��

� �� �
' a��_\ � F � V � � a � ��� � �
	 a

� C , � \ � E �
� �� , ' �

� V �
	V a 	 � 	 	 F

�
� C �
	ZF , 	 	 �

where
	 	

denotes the derivative with respect to
,

, and

� C '$� C � , 	���� 	 	 ' U 	 V F � � C � � a � ��� � 	V ' U 	 V F�� � 	V �
U 	 V ' ����\^]_� COS E�O$PF , E � � S E � � 	V '[a U V� V U 	 V T

To obtain the partial derivatives with respect to � C
, use� �� � C

' � �� , \
d � C
d
, �

d � C
d
, ' ���� a ]_�

� U EV � U 	 V � V a UWV � 	V �� �V
T
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or equivalently � �� � C
' � �� , d

,
d � C

�
d
,

d � C
' �

���� a ]_� � $
��� E F $�a ��\^]

�

� �
where

�
' U V� V

' � � � C a ] � COS �
�

' ! ��\^] aY�O$Ra ��\^]_�
� E " COS E T

The above derivatives lead immediately to the likelihood equations for

� 	 ' � �B� � � � C �
.

We need second derivatives for numerical efficient computations, and for computing the

observed information matrix. The entries of the Hessian matrix for

� �B� � � , �
are given by

a � E �� � � � � '[� � V \ � � E � �@��� � a , E 	 E � � �
a � E �� � � �

'[� � V \ � E � � � �
	 a , � C F2��� � a , E 	 E � �
	 a UWV $ � � ���
a � E �� � � , ' � � C � � J � 	V �Oa�� � � V F , � C a UWV $ � �_F � V � � C F , 	 E �	 a U 	 V $ � �
N��
a � E �� � E ' � � E J a ��F(� � V � � �
	 a , � C �WF � EV � � ��� � a , E 	 E � ��N��
a � E �� � � , ')a � � C � � ! � 	V �
	 a , � C �WF � V �
	 	 a � C a , 	 E �	�� "9�
a � E �� , E ' � � � 	V � E a � V � 	 	V� EV

F2�
	 	 �O� 	 	�F(	 ��	 	 	�a �	 � 	 E �	 a
�
� C ��� 	 	�F , 	 	 	I�

where � ' � � C � � a � ����� �	 '0	ZF , 	 	 �
� C ' � C � , 	���� 	 E '

diag

�
� E �B'

diag

� � E � , 	�� ���
	 	 	 '

d
	 	

d
, ' U 	 	V F � 	 	V � � C � � a � �����

U 	 	V '
d U 	 V
d
, ')a � UWV�O$.F , E � E � � 	 	V '

d
� 	V

d
, ')a � U 	 V � U 	 V � V a UWV � 	V �� EV

F UWV U 	 	V� V � T

Again, to obtain the Hessian matrix with respect to � C
instead of

,
, the last row and last

column of the above matrix must be multiplied by d
, \

d � C
, except the bottom right ele-

ment which is computed as

a � E �� � EC
')a � E �� , E

�
d
,

d � C �
E a � �� ,

�
d
E ,

d � EC � T

The final term of this expression is given by

d
E ,

d � EC
')a �

���� a ]_� � �
	

�
���

� E F �
�
	

���

� F ���O$Ra ��\^]_�
�
	

�

� �
where

�
	 '

d
�

d � C
' �

�
� E �� a ]_� � �

	 '
d
�

d � C
')a �O$ a ��\^]_� ��� 	

�

T
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For practical numerical work, the above quantities suffices. If the expected Fisher in-
formation matrix

� �


is needed, this is given by� �

 ' � � � ��
 �

where
� ��


is the information matrix for the DP parameters, given by Azzalini (1985) in the

case
� ')$ � , and

� ' � � � � 	 � �� ��� 	 ��� � '
�������

$ a UWV� V
� �

� � C# $
� V

� �
� � C# # � ,� � C

��������
where � �

� � C
')a � UWV� � V � C

� � �
� � C

')a � � 	V� EV d
,

d � C
T
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