000 0000000 000 000 00	Opening	SN distribution	General form	ST	Closing

Symmetry-modulated distributions: an introduction

> Adelchi Azzalini University of Padua, Italy

Université catholique de Louvain 26th January 2018

Opening	SN distribution	General form	ST	Closing
●00		000	000	00
Context and	aim			

- A flood of probability distributions has surged in recent years
- Many proposals aim at 'generalizing' the normal family
- Features of interest: skewness and kurtosis
- Within this context, we present an introduction to a specific formulation: symmetry-modulated distributions (AKA skew-symmetric distributions)
- works equally in the univariate and the multivariate case
- focus is essentially on continuous distributions (discrete constructions are possible, but limited)

Opening	SN distribution	General form	ST	Closing
○●○		000	000	00
Some genera	l considertions			

- The success of the normal distribution originates by the combination of
 - 'physical-motivation' for its genesis
 - mathematical tractability
 - reasonable empirical adequacy in a range of situations
- We want to improve on flexibility, that is, empirical adequacy,
- ... while retaining other appealing aspects as far as possible
- Alternative formulations may have different priorities

- fitting log-price of a bottle of Barolo wine
- different formulations are numerically nearly equivalent
- which one to choose?
- numerical adequacy is not all that matters

Opening 000	SN distribution	General form	ST 000	Closing 00
Basic case:	skew-normal	distribution for d	= 1	

- a key feature of the normal density is symmetry ... always!
- idea: perturb the N(0,1) p.d.f. $\phi(x)$ by an adjustable factor:

 $f_{\rm SN}(x) = 2 \phi(x) \Phi(\alpha x)$

where Φ is the N(0,1) c.d.f. and α is a real parameter

- \bullet the normalizing factor 2 holds for all $\alpha{\rm 's}$
- if $\alpha = 0$ reduce to N(0, 1)
- in practical work introduce location and scale parameters:

 $Z \text{ has density } f_{\rm SN}, \qquad Y = \xi + \omega \, Z$

so that Y is regulated by ξ, ω, α .

• we say that Z, Y have skew-normal distribution, write

$$Z \sim SN(0, 1, \alpha), \qquad Y \sim SN(\xi, \omega^2, \alpha)$$

Opening	SN distribution	General form	ST	Closing
000	○●○○○○○○	000	000	00
Skew-nor	mal distribution -	– some example	c	

Opening	SN distribution	General form	ST	Closing
000		000	000	00
A number of	nice properties			

- explicit expression for moment generating function, hence moments
- manageable expression of the distribution function
- nice formal properties, a key instance is $Z^2 \sim \chi_1^2$
- various stochastic representations available
 - useful for random-number generation of SN variates
 - motivate the adoption of this model in specific situations
- the two more important stochastic representations are
 - via a selection (censoring) mechanism: given $(X_0, X_1) \sim N_2(0, P)$, take $Z = (X_0 | X_1 > 0)$
 - **2** via an additive form: given $U_0, U_1 \sim N(0, 1)$ iid, take $Z = a|U_0| + b U_1$

'Stochastic frontier analysis' model for production units:
 (product) = f(input factors) - (inefficiency) + (error term)

(usually product is log-transformed)

• its basic version is of type

$$(\text{product}) = f(\text{input factors}) \underbrace{-|N_1| + N_2}_{\text{random term}}$$

for some independent 0-mean normal variables N_1 and N_2

- $\bullet\,$ Recall additive representation, hence $-|N_1|+N_2\sim {\rm SN}$
- this connection allows to make use of subsequent results to develop new tools for stochastic frontier analysis

Opening	SN distribution	General form	ST	Closing
	00000000			
Multivari	ate skew-normal	distribution		

• If $\phi_d(x; \bar{\Omega})$ denotes $N_d(0, \bar{\Omega})$ p.d.f. where $\bar{\Omega} > 0$ has all 1's on the diagonal, then

 $2 \phi_d(x; \overline{\Omega}) \Phi(x^\top \alpha), \qquad x \in \mathbb{R}^d,$

is a density function for any vector parameter $\boldsymbol{\alpha}$

- if $\alpha = 0$ we are back to $N_d(0, \overline{\Omega})$, otherwise density is skew
- given Z distributed as above, consider the location-scale family generated by

$$Y = \xi + \omega Z,$$

where $\xi \in \mathbb{R}^d$ and ω is positive diagonal matrix

• we say that Y has a *d*-dimensional skew-normal distribution and write

$$Y \sim SN_d(\xi, \Omega, \alpha), \qquad \Omega = \omega \bar{\Omega} \omega$$

Opening	SN distribution	General form	ST	Closing
000	00000€00	000	000	00
Multivari	ate SN: some eva	mnles with $d-$	-	

- family closed under marginalization and affine transformations: $a + A^{\top} Y \sim SN_m(a + A^{\top}\xi, A^{\top}\Omega A, \tilde{\alpha}), \quad \tilde{\alpha} = function(A, \bar{\Omega}, \alpha)$
- distribution of quadratic forms, e.g.

Mahalanobis distances : $(Y - \xi)^{\top} \Omega^{-1} (Y - \xi) \sim \chi_d^2$

a special case of a more general *exact* result on quadratic forms

• moment generating function of Z:

 $M_Z(t) = 2 \exp(\frac{1}{2} t^\top \overline{\Omega} t) \Phi(\delta^\top t), \qquad \delta = \operatorname{function}(\overline{\Omega}, \alpha)$

• this allows us to extend classical formulations for normal rv's

- Adcock & Shutes (1999): CAPM under SN dist'n assuption
- Adcock (2007): extension of Stein's lemma
- Corns & Satchell (2007): skew Brownian motion, extend Black-Sholes formula for pricing options
- Carmichael & Coën (2013): asset pricing under SN returns
- De Luca & *et alii* (2004, 2005): multivariate GARCH-type model for asymmetric relationships among financial markets
- Vernic (2006): tail conditional expectation (for d = 1)
- et cetera

• A more general form of modulation (or perturbation) of symmetry:

 $f(x) = 2 f_0(x) G_0\{w(x)\}, \qquad x \in \mathbb{R}^d,$

with conditions

- f_0 is d-dimensional p.d.f., symmetric about 0: $f_0(x) = f_0(-x)$,
- G_0 is symmetric continuous c.d.f on \mathbb{R} : $G_0(t) + G_0(-t) = 1$,
- w(x) is 'odd': w(-x) = -w(x)

always lends a proper density function on \mathbb{R}^d

- SN is a special case: $f_0(x) = \phi_d(x; \overline{\Omega}), \ G_0 = \Phi, \ w(x) = \alpha^\top x$
- The prescriptions are simple
 → a wide (wild, perhaps) universe of constructions is possible

13/19

Opening	SN distribution	General form	ST	Closing
000		○○●	000	00
Skew-elliptic	al distributions			

$f(x) = 2 f_0(x) G_0\{w(x)\}, \qquad x \in \mathbb{R}^d$

- Theorem: all densities can be written in this form
- An interesing subclass: baseline f_0 is elliptical
- a further specification: scale mixtures of SN variates
- that is, S X where X ~ SN_d(0, Ω, α) and S > 0 is indept r.v.
- an interesting case: $S \sim 1/\sqrt{\chi_{\nu}^2/\nu} \Rightarrow$ skew-*t* distribution (ST)

Opening	SN distribution	General form	ST	Closing
000		000	●00	00
Skew- <i>t</i> dist	ribution, I			

• assume $Z \sim SN_d(0, \overline{\Omega}, \alpha)$, $W_{\nu} \sim \chi^2_{\nu}$ indept; define skew-t r.v.:

$$ilde{Z} = rac{Z}{\sqrt{W_{\nu}/\nu}} \sim \mathrm{ST}_{d}(0, \bar{\Omega}, \alpha, \nu)$$

similarly to construction of regular Student's t

- density of \tilde{Z} is of type $2 f_0(x) G_0\{w(x)\}$ where
 - f_0 is the multivariate t_{ν} density with 0 location
 - G_0 is the univariate $t_{\nu+d}$ c.d.f.
 - w(x) is a suitable non-linear function of $(d, \overline{\Omega}, \alpha, \nu)$
 - (a special instance of skew-elliptical family of distributions)
- limit behaviour as $\nu \to \infty$: $w(x) \to \alpha^{\top} x$ and $ST \to SN$
- include location and scale:

$$\tilde{Y} = \xi + \omega \, \tilde{Z}$$

• four-parameter skew-t distribution:

$$ilde{Y} \sim \mathrm{ST}_d(\xi, \Omega, \alpha, \nu), \qquad \Omega = \omega \bar{\Omega} \omega$$

Opening	SN distribution	General form	ST	Closing
000		000	⊙●○	00
Skew- <i>t</i> distribution, II				

- closure under marginalization and affine transformations holds
- Mahalanobis distances:

$$(Y - \xi)^{\top} \Omega^{-1} (Y - \xi) \sim \text{scaled } F$$

useful to build model diagnostics

- no MGF, but moments computed via stochastic representation (only moments up to an order less than ν exist, like for usual Student's t)
- wide range of coefficients of skewness and kurtosis
- hence high flexibility to fit data
- $\bullet\,$ in particular low $\nu\,{}^{\prime}{\rm s}$ allow for long tails, possibly asymmetric

Opening	SN distribution	General form	ST	Closing
000		000	00●	00
Skew- <i>t</i> distr	ibution, III			

- ST is a highly flexible distribution
- retains mathematical tractability, although reduced wrt SN
- applications in many research domains
- instances in econometrics/finance, empirical and theoretical:
 - Walls (2005) models (log-)returns of film industry
 - on similar theme, work of Pitt (2010, paper and monograph)
 - Meucci (2006) extends Black-Litterman technique
 - Adcock (2010) adapts his earlier work on portfolio selection
 - et cetera
- much use in finite mixtures/model-based clustering
- Beware of confusion: after this skew-*t* has been introduced in 2001, the name has been adoped for some different proposals.

Opening	SN distribution	General form	ST	Closing
000		000	000	●○
Recap				

- Overall target is to build flexible and tractable distributions
- SN and ST distributions are appealing in this logic
- software tools available
- if extra flexibility is required, general formulation offers the tool (at the cost of reduced tractability)

Opening 000	SN distribution	General form	ST 000	Closing ○●	
Resources and tools					

- A. Azzalini with the collaboration of A. Capitanio (2014). *The Skew-Normal and Related Families.* Cambridge University Press, IMS Monographs series.
- Bibliography and other material at: http://azzalini.stat.unipd.it/SN/
- Software:
 - R package sn on CRAN
 - some other tools exist (e.g. in Matlab)