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Context and aim

A flood of probability distributions has surged in recent years
Many proposals aim at ‘generalizing’ the normal family
Features of interest: skewness and kurtosis
Within this context, we present an introduction to a specific
formulation: symmetry-modulated distributions
(AKA skew-symmetric distributions)

works equally in the univariate and the multivariate case
focus is essentially on continuous distributions
(discrete constructions are possible, but limited)
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Some general considertions

The success of the normal distribution originates by the
combination of

‘physical-motivation’ for its genesis
mathematical tractability
reasonable empirical adequacy in a range of situations

We want to improve on flexibility, that is, empirical adequacy,
. . . while retaining other appealing aspects as far as possible
Alternative formulations may have different priorities
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Which fitting distribution to choose?
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fitting log-price of a bottle of Barolo wine
different formulations are numerically nearly equivalent
which one to choose?
numerical adequacy is not all that matters
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Basic case: skew-normal distribution for d = 1

a key feature of the normal density is symmetry . . . always!
idea: perturb the N(0, 1) p.d.f. φ(x) by an adjustable factor:

fSN(x) = 2 φ(x) Φ(α x)

where Φ is the N(0, 1) c.d.f. and α is a real parameter
the normalizing factor 2 holds for all α’s
if α = 0 reduce to N(0, 1)

in practical work introduce location and scale parameters:

Z has density fSN, Y = ξ + ω Z

so that Y is regulated by ξ, ω, α.
we say that Z ,Y have skew-normal distribution, write

Z ∼ SN(0, 1, α), Y ∼ SN(ξ, ω2, α)
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Skew-normal distribution – some examples
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A number of nice properties

explicit expression for moment generating function, hence
moments
manageable expression of the distribution function
nice formal properties, a key instance is Z 2 ∼ χ2

1
various stochastic representations available

useful for random-number generation of SN variates
motivate the adoption of this model in specific situations

the two more important stochastic representations are
1 via a selection (censoring) mechanism:

given (X0,X1) ∼ N2(0,P), take Z = (X0|X1 > 0)
2 via an additive form:

given U0,U1 ∼ N(0, 1) iid, take Z = a|U0|+ b U1
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Illustration: connection with ‘stochastic frontier analysis’

‘Stochastic frontier analysis’ model for production units:

(product) = f (input factors)− (inefficiency) + (error term)

(usually product is log-transformed)

its basic version is of type

(product) = f (input factors)−|N1|+ N2︸ ︷︷ ︸
random term

for some independent 0-mean normal variables N1 and N2

Recall additive representation, hence −|N1|+ N2 ∼ SN
this connection allows to make use of subsequent results to
develop new tools for stochastic frontier analysis
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Multivariate skew-normal distribution

If φd(x ; Ω̄) denotes Nd(0, Ω̄) p.d.f. where Ω̄ > 0 has all 1’s on
the diagonal, then

2 φd(x ; Ω̄) Φ(x>α), x ∈ Rd ,

is a density function for any vector parameter α
if α = 0 we are back to Nd(0, Ω̄), otherwise density is skew
given Z distributed as above, consider the location-scale family
generated by

Y = ξ + ω Z ,

where ξ ∈ Rd and ω is positive diagonal matrix
we say that Y has a d-dimensional skew-normal distribution
and write

Y ∼ SNd(ξ,Ω, α), Ω = ωΩ̄ω
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Multivariate SN: some examples with d = 2
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Multivariate SN: some properties and some uses

family closed under marginalization and affine transformations:

a+A>Y ∼ SNm(a+A>ξ,A>ΩA, α̃), α̃ = function(A, Ω̄, α)

distribution of quadratic forms, e. g.

Mahalanobis distances : (Y − ξ)>Ω−1(Y − ξ) ∼ χ2
d

a special case of a more general exact result on quadratic forms
moment generating function of Z :

MZ (t) = 2 exp(1
2 t
>Ω̄t) Φ(δ>t), δ = function(Ω̄, α)

this allows us to extend classical formulations for normal rv’s
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Formulations in finance and alike: from Normal to SN

Adcock & Shutes (1999): CAPM under SN dist’n assuption
Adcock (2007): extension of Stein’s lemma
Corns & Satchell (2007): skew Brownian motion,

extend Black-Sholes formula for pricing options
Carmichael & Coën (2013): asset pricing under SN returns
De Luca & et alii (2004, 2005): multivariate GARCH-type
model for asymmetric relationships among financial markets

Vernic (2006): tail conditional expectation (for d = 1)
et cetera
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More general context: modulation of symmetry

A more general form of modulation (or perturbation) of
symmetry:

f (x) = 2 f0(x) G0{w(x)}, x ∈ Rd ,

with conditions
f0 is d-dimensional p.d.f., symmetric about 0: f0(x) = f0(−x),
G0 is symmetric continuous c.d.f on R: G0(t) + G0(−t) = 1,
w(x) is ‘odd’: w(−x) = −w(x)

always lends a proper density function on Rd

SN is a special case: f0(x) = φd(x ; Ω̄), G0 = Φ, w(x) = α>x

The prescriptions are simple
→ a wide (wild, perhaps) universe of constructions is possible
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Wild perturbations of the standard bivariate Normal density
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Skew-elliptical distributions

f (x) = 2 f0(x) G0{w(x)}, x ∈ Rd

Theorem: all densities can be written in this form
An interesing subclass: baseline f0 is elliptical
a further specification: scale mixtures of SN variates
that is, S X where X ∼ SNd(0,Ω, α) and S > 0 is indept r.v.
an interesting case: S ∼ 1/

√
χ2
ν/ν ⇒ skew-t distribution (ST)
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Skew-t distribution, I

assume Z ∼ SNd(0, Ω̄, α), Wν ∼ χ2
ν indept; define skew-t r.v.:

Z̃ =
Z√
Wν/ν

∼ STd(0, Ω̄, α, ν)

similarly to construction of regular Student’s t
density of Z̃ is of type 2 f0(x)G0{w(x)} where

f0 is the multivariate tν density with 0 location
G0 is the univariate tν+d c.d.f.
w(x) is a suitable non-linear function of (d , Ω̄, α, ν)

(a special instance of skew-elliptical family of distributions)
limit behaviour as ν →∞: w(x)→ α>x and ST→ SN
include location and scale:

Ỹ = ξ + ω Z̃

four-parameter skew-t distribution:

Ỹ ∼ STd(ξ,Ω, α, ν), Ω = ωΩ̄ω
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Skew-t distribution, II

closure under marginalization and affine transformations holds
Mahalanobis distances:

(Y − ξ)>Ω−1(Y − ξ) ∼ scaled F

useful to build model diagnostics
no MGF, but moments computed via stochastic representation
(only moments up to an order less than ν exist, like for usual Student’s t)

wide range of coefficients of skewness and kurtosis
hence high flexibility to fit data
in particular low ν’s allow for long tails, possibly asymmetric
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Skew-t distribution, III

ST is a highly flexible distribution
retains mathematical tractability, although reduced wrt SN
applications in many research domains
instances in econometrics/finance, empirical and theoretical:

Walls (2005) models (log-)returns of film industry
on similar theme, work of Pitt (2010, paper and monograph)
Meucci (2006) extends Black-Litterman technique
Adcock (2010) adapts his earlier work on portfolio selection
et cetera

much use in finite mixtures/model-based clustering

Beware of confusion: after this skew-t has been introduced in
2001, the name has been adoped for some different proposals.
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Recap

Overall target is to build flexible and tractable distributions
SN and ST distributions are appealing in this logic
software tools available
if extra flexibility is required, general formulation offers the tool
(at the cost of reduced tractability)
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Resources and tools

A. Azzalini with the collaboration of A. Capitanio (2014).
The Skew-Normal and Related Families.
Cambridge University Press, IMS Monographs series.

Bibliography and other material at:
http://azzalini.stat.unipd.it/SN/

Software:
R package sn on CRAN
some other tools exist (e.g. in Matlab)
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