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Outline of the talk

skew-symmetric families of distributions
flexible likelihood for robust inference
some numerical comparison
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Skew-symmetric distributions — Introduction

A generator of distributions
context: families of continuous distributions on Rd

start from a density f0 symmetric around 0,

f0(x) = f0(−x) (x ∈ Rd )

choose a real-valued w(x) such that w(−x) = −w(x)

choose a scalar cdf G(·) with symmetric pdf G′(·)
then

f (x) = 2 f0(x) G{w(x)}

is a skew-symmetric pdf
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Basic case: skew-normal distribution (d = 1)

Choose N(0,1) ingredients:

f0(x) = ϕ(x), G = Φ, w(x) = α x

and get
f (x) = 2ϕ(x) Φ(αx)
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Regulate both skewness and kurtosis

Select f0 from a symmetric family with adjustable tails.

Interesting cases:
Exponential power (Subbotin, 1923):

f0(x) ∝ exp
(
−
‖x‖νΩ
ν

)
Student’s t :

f0(x) ∝
(

1 +
‖x‖2Ω
ν

)− ν+d
2

In both cases ν regulates the tail thickness

Various options for the skewing factor
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Skew-t distribution (case d = 1)

let Z ∼ Skew-normal(α)

then a natural form of skew-t (ST) variate is

X =
Z√
χ2

ν/ν

density is
f (x) = 2 tν(x) Tν+1{w(x)}

where

w(x) = αx

√
ν + 1
ν + x2

Note: f (x) is of skew-symmetric type
Note: a multivariate version exists
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Skew-t distribution: example of densities
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A flexible distribution

Consider ST has a general-purpose tool for statistical
modelling
Combines high flexibility for skewness and for the tails:
α regulates skewness (α ∈ Rd ),
ν regulates the tail thickness (ν > 0)
Make use of the tail parameter to accomodate “outliers”,
possibly non-symmetrically distributed
(Ideal in d-dimensional case: a tail parameter for each
component)
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Regression models with ST errors

fitted model:

y = x>β + ε, ε ∼ (scale factor)× ST

estimate parameters via MLE
(or Bayesian approach, according to taste)
adjust intercept because E{ST} 6= 0
various options:

intercept = β̂0 + E{ε} . . . needs ν̂ > 1
intercept = β̂0 + median(ε) . . . use this
others. . .
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Flexible distribution approach vs M-estimation

M-estimates converge to solution of non-linear equation:

λ(θ) := E{ψ(X , θ)} = 0

In simple location case

λ(θ) := E{ψ(X − θ)} = 0

What are we estimating?
If the error distribution is not symmetric, no explicit solution

In the “robust likelihood” approach we estimate the
parameters of the error distribution
Note:
empirical evidence that real data have asymmetric outliers
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A simple regression example (Yohai, 1987)
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A classical benchmark: stackloss data

(loss function) =
n∑

i=1

|yi − ŷi |p

p 0.5 1 2

LS 30.1 49.7 178.8
MM 27.1 45.3 222.8
LTS 25.9 44.7 241.7
ST 25.0 43.4 240.0

(n = 21 with 3 covariates)
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Regression with contaminated normal errors

Simulate data from model:

y = β0 + β1x + ε

where

ε ∼ (1− π) N(0,1) + π N(µ1,3)

β0 = 0
β1 = 2
π = 0.05, 0.10
µ1 = 2.5, 5, 10

replicates: 104 in each case

Distribution of errors
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Simulation: Root Mean Square Error for β0
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Simulation: Root Mean Square Error for β1
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Summary

ST and other flexible families of distributions allow
regulation of skewness and kurtosis
corresponding likelihood inference appears reliable even
when used outside the parametric class
advantages are:

a probability model is fitted to the data
the quantities being estimated are explicitly known
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