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Outline

Outline of the talk

@ skew-symmetric families of distributions
@ flexible likelihood for robust inference
@ some numerical comparison




Skew-symmetric distributions

Skew-symmetric distributions — Introduction

A generator of distributions
@ context: families of continuous distributions on R¢
@ start from a density fy symmetric around 0,

fo(x) = fo(—X) (x € RY)

@ choose a real-valued w(x) such that w(—x) = —w(x)
@ choose a scalar cdf G(-) with symmetric pdf G'(-)
@ then

f(x) = 21o(x) G{w(x)}

is a skew-symmetric pdf




Skew-symmetric distributions

Basic case: skew-normal distribution (d = 1)

Choose N(0, 1) ingredients:
h(x)=¢(x), G=o,  w(x)=ax
and get




Skew-symmetric distributions

Regulate both skewness and kurtosis

Select fy from a symmetric family with adjustable tails.

Interesting cases:
@ Exponential power (Subbotin, 1923):

fo(x) o exp <_ny\;’2)

@ Student’s t:
2\ 3
X
1%
In both cases v regulates the tail thickness

Various options for the skewing factor




ST

Skew-t distribution (case d = 1)

@ let Z ~ Skew-normal(«)
@ then a natural form of skew-t (ST) variate is

Z

VX /v

X =

@ density is
F(X) = 214,(x) Tt {w(x)}

W(X)_ X ﬂ
@ \/ v+ X2

@ Note: f(x) is of skew-symmetric type
@ Note: a multivariate version exists

where




ST

Skew-t distribution: example of densities




Flexible likelihood

A flexible distribution

@ Consider ST has a general-purpose tool for statistical
modelling

@ Combines high flexibility for skewness and for the tails:
a regulates skewness (o € RY),
v regulates the tail thickness (v > 0)

@ Make use of the tail parameter to accomodate “outliers”,
possibly non-symmetrically distributed

@ (ldeal in d-dimensional case: a tail parameter for each
component)




Flexible likelihood

Regression models with ST errors

@ fitted model:
y=x"B+e, ¢ ~ (scale factor) x ST

@ estimate parameters via MLE
(or Bayesian approach, according to taste)
@ adjust intercept because E{ST} # 0
various options:
o intercept = o + E{e} ...needs i > 1
e intercept = 5y + median(s) ...use this
e others...




Flexible likelihood

Flexible distribution approach vs M-estimation

@ M-estimates converge to solution of non-linear equation:
A(0) :=E{¢(X,0)} =0

@ In simple location case
A(0) :=E{y(X - 0)} =0

@ What are we estimating?

@ [f the error distribution is not symmetric, no explicit solution
In the “robust likelihood” approach we estimate the
parameters of the error distribution

@ Note:
empirical evidence that real data have asymmetric outliers




Numerical illustrations

A simple regression example (Yohai, 1987)

International phone calls from Belgium (Yohai, 1987)
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Numerical illustrations

A simple regression example (Yohai, 1987)

International phone calls from Belgium (Yohai, 1987)
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Numerical illustrations

A classical benchmark: stackloss data

n
(loss function) = " |y; — Ji|?
i=1

p 0.5 1 2

LS 30.1 49.7 178.8
MM 271 453 222.8
LTS 25.9 44.7 2417
ST 25.0 43.4 240.0

(n = 21 with 3 covariates)




Numerical illustrations

Regression with contaminated normal errors

Simulate data from model:
y=po+pix+e
where

e ~ (1=a)N(@O,1)+7N(u1,3) |

Bo = 0
pr = 2
= = 0.05 0.10
i = 25, 5 10

replicates: 10* in each case




Simulation

Numerical illustrations

: Root Mean Square Error for f
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Numerical illustrations

Simulation: Root Mean Square Error for ;4
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Closing

Summary

@ ST and other flexible families of distributions allow
regulation of skewness and kurtosis

@ corresponding likelihood inference appears reliable even
when used outside the parametric class

@ advantages are:

e a probability model is fitted to the data
e the quantities being estimated are explicitly known




Closing
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