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Lots of distributions available, do we need more?

Probability textbooks introduce ‘standard’ distributions
Over the years many others have been introduced
Classical work includes proposals by K.Pearson, Fechner,
Edgeworth, Johnson, Burr, etc.
Still the search keeps going.
Two currently popular general approaches:
(‘general’: allowing unlimited number of specific constructions)

copulae
symmetry-modulated distributions,
AKA skew-symmetric distributions

Question: why so much effort?
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Illustration: QQ-normal probability plots from two samples
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Larger datasets require more accurate modelling

The two datasets are sampled from the same distribution
The visual message of normal QQ-plot is completely different
although only the sample size has changed
Only the larger sample could highlight non-normality
Today larger and larger datasets are available
More data is good, but also more challenging
We need flexible tools for accurate modelling of large datasets
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Multivariate datasets are increasingly more frequent

data collection is more often multivariate, possibly highly so
many above-quoted formulations are univariate
special interest in developing flexible multivariate distributions
. . . flexible yet mathematically tractable
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Our plan of work

A tutorial to symmetry-modulated distributions:

introduce main concepts in the univariate case
focus on key special cases
extend concepts to the multivariate settings
sketch of some extensions
followed by practical work with R package ‘sn’
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Básis (d=1)
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Skew-normal distribution – idea

Idea: start from a normal distribution and ‘perturb’ it.
Perturbation, or modulation, is achieved by a selection mechanism.
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Skew-normal distribution – compute density function

assume : (X ,W ) ∼ N2(0,Σ), Σ =

(
1 δ
δ 1

)
recall : (W |X = x) ∼ N(δx , 1− δ2)

(density at x |W ≥ 0) =
1
dx

P{X ∈ (x , x + dx)|W ≥ 0}

=
1
dx

P{X ∈ (x , x + dx) ∩W ≥ 0}
P{W ≥ 0}

=
1
dx

P{X ∈ (x , x + dx)}P{W ≥ 0|X = x}
1/2

= 2 ϕ(x) Φ(αx), α =
δ√

1− δ2
∈ R

write : Z ≡ (X |W ≥ 0) ∼ SN(α)
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Skew-normal distribution – density function plots
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Towards a general result, preliminaries

let (X ,W ) ∼ N2(0,Σ) as before
T = −(W − δX )/

√
1− δ2 ∼ N(0, 1)

cov{X ,T} = 0 =⇒ X ⊥⊥ T (independent)
(W ≥ 0) is algebraically equivalent to (T ≤ αX )

hence Z ≡ (X |W ≥ 0) ≡ (X |T ≤ αX )

Note the key ingredients here:
X ⊥⊥ T , X and T symmetric about 0, and so is T − αX
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A general result

Lemma (Univariate version)

If f0 is PDF and G0 a continuous CDF on R, both symmetric about
0, then

f (x) = 2 f0(x) G0{w(x)}, x ∈ R,

is a proper density function for any odd function w .

Proof. Denote X ∼ f0 and T ∼ G0, independent rv’s.
The distribution of T − w(X ) is symmetric about 0.
Then

1
2 = P{T − w(X ) ≤ 0}

= EX{P{T ≤ w(x)|X = x}}

=

∫
R
G0{w(x)} f0(x) dx
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Some comments

Above result allows to combine freely f0, G0 and w :
a huge variety of constructions are possible
however, ‘possible’ does not automatically imply ‘useful’:
need to select those which are worth of consideration
The result works also if the support is a subset of R
The lemma allows a number of extensions:
multivariate, non-odd w , discrete variables, etc.
(Some of these extensions will be examined later)

From the assumptions of the lemma, G (x) = G0{w(x)}
satisfies

G (x) ≥ 0, G (x) + G (−x) = 1 .

Possible to formulate the result equivalently in terms of G (x).
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Random rumber generation / stochastic representation

Crude version Generate X ∼ f0 and T ∼ G0 independently and set

Z = (X |T ≤ w(X ))

Drawback: reject sampled values with T > w(X ),
half of them on average.

Improved version

Z =

{
X if T ≤ w(X )

−X otherwise

No rejection of sampled values
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Perturbation invariance

Recall stochastic representation

Z =

{
X if T ≤ w(X )

−X otherwise

then |Z | is distributed like |X |, write |Z | d
= |X |

more generally: t(Z )
d
= t(X ) for any even t(·)

⇒ property of perturbation (or modulation) invariance
Example: if Z ∼ SN(α), then Z 2 ∼ χ2

1
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Plus (d = 1)
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More on SN: other stochastic representations

Representation by conditioning/selection
this was how we introduced the SN distribution

Additive representation
If U0,U1 are independent N(0, 1) variables, then

Z =
√
1− δ2 U0 + δ |U1| ∼ SN(α)

much used to develop EM-type algoritms

Representation via minima/maxima

assume (X ,Y ) is bivariate standard Normal with
corr{X ,Y } = ρ
write α =

√
(1− ρ)/(1 + ρ)

then max(X ,Y ) ∼ SN(α) and min(X ,Y ) ∼ SN(−α)
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More on SN: some formal properties

Moment generating function has a simple expression:

M(t) = 2 exp(1
2 t

2) Φ(δt)

=⇒ can compute moments

e.g. E{Z} =

√
2
π
δ =

√
2
π

α√
1 + α2

(only odd moments are necessary)

=⇒ derive futher properties
e.g. if Z ∼ SN(α) ⊥⊥ U ∼ N(0, 1), Z + U ∼

√
2× SN(α̃)

Distribution function has a tractable expression
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SN: about tails

consider ratio of SN vs N tails:

ratio(x) =
2 ϕ(x) Φ(αx)

ϕ(x)
as x → ±∞

if α > 0,

ratio(x) = 2 Φ(αx)→

{
2 if x → +∞
0 if x → −∞

if α < 0, just swap ±∞
Implication:
tails decay either at the same rate of N(0, 1) or faster
Same conclusion if SN density is replaced by another one like

f (x) = 2 ϕ(x) G0(αx)
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Thick tails

In many situation we need thicker-than-normal tails
(occasionally need thinner-than-normal tails)

This feature cannot be achieved by perturbation of N(0, 1)

We must start from a baseline density f0 in

f (x) = 2 f0(x) G0{w(x)}
which already has thick tails
Many possible options
Preference for those where f0 allows a tail-regulation parameter
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Skew-t (ST) distribution – genesis

A good choice for f0 is the Student’s t density: t(x ; ν), ν > 0
Even then, still many possible options, such as the ‘linear form’

2 t(x ; ν) T (α x ; ν)

There are strong reasons for picking up another option
Recall origin of classical Student’s t:

Z ∼ N(0, 1) ⊥⊥Wν ∼ χ2
ν =⇒ Z√

Wν/ν
∼ t(x ; ν)

Use the the same construction with Z ∼ SN(α)

=⇒ obtain the ST(α, ν) distribution

Note: the link with the classical t(x ; ν) is not the only reason
Beware: in literature various other proposals named ‘skew-t’
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Skew-t (ST) distribution – a closer look

Algebraic work leads to ST(α, ν) density function:

2 t(x ; ν) T

(
αx

√
ν + 1
ν + x2 ; ν + 1

)
Z ∼ ST(α, ν) =⇒ Z 2 ∼ F (1, ν)

m-th order moment exist if m < ν, like regular t
explicit expressions available up to m = 4
(if necessary, higher moments could be worked out)

a very wide range of γ1 (skewness) and γ2 (kurtosis)
−∞ < γ1 <∞, 0 ≤ γ2 <∞ (but no γ2 < 0)
widely flexible shape, well-suited for data fitting
(when complemented with location and scale parameters)

as ν →∞, density ST(α, ν)→ SN(α)
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Skew-t (ST) distribution – examples of density

0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

x

S
T

 d
en

si
ty

 fu
nc

tio
n

α = 3

ν = 0.5

ν = 1

ν = 2

ν = 5

ν = 20

23 / 50



Prólogos Básis (d=1) Plus (d = 1) Data Básis (d ≥ 1) Ultra Ω

Data
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Location and scale parameter

Let Z be a SN or ST or something-of-the-kind random variable
For applied work, introduce location and scale parameters:

Y = ξ + ω Z , ξ ∈ R, ω ∈ R+

correspondingly extend our notation to
Y ∼ SN(ξ, ω, α) and Y ∼ ST(ξ, ω, α, ν)

Note: ξ is not the mean, ω is not the standard deviation
(this is why we do not use classical µ, σ symbols)
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Fitting a SN distribution

Start from simple case of i.i.d. observations y = (y1, . . . , yn)
log-likelihood for SN:

log L(ξ, ω, α) = constant− 1
2n logω − 1

2

∑
i

z2
i +

+
∑
i

log Φ(α zi )

having set zi = (yi − ξ)/ω

In a regression model, location depends on covariates xi ,
typically in a linear form:

ξi = x>i β xi , β ∈ Rp, i = 1, . . . , n

log-likelihood log L(β, ω, α) is as before, except that now

zi = (yi − ξi )/ω = (yi − x>i β)/ω
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Illustration: fitting SN to phenols content in Barolo wine

n = 59
γ̂1 = 0.8
γ̂1

std.err.
= 2.5
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Illustration: graphical diagnostics of SN fitting

recall : Z 2 = (Y − ξ)2/ω2 ∼ χ2
1

approx : Ẑ 2 = (Y − ξ̂)2/ω̂2 ·∼ χ2
1

QQ-plot : ẑ2
(i) vs χ2

1 quantiles

with ST : replace χ2
1 with F (1, ν̂)
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SN log-likelihood: some unusual aspects

Two sort of noteworthy phenomena

‘Transient’ sort of occasional events
Usually with small n, sporadic if n beyond a few dozens
Similar behaviour fairly common also with other models

multiple local maxima
max log L occurs at α→ ±∞

‘Persistent (but local)’ behaviour:
that is, for all samples, but only at α = 0

stationarity of log L at point α = 0
correspondingly, singularity of the information matrix
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SN log-likelihood: stationarity of log L at α = 0

deviance (LRT) : D(θ) = 2 {log L(θ̂)− log L(θ)}
profile deviance : D(θ) = 2 {log L(θ̂, ψ̂)− log L(θ, ψ̂(θ))}
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CP for SN

The twists of log L at α = 0 can be fixed by switching from
‘direct’ (DP ) to ‘centred parameterization’ (DP)
Conceptually, we re-parameterize as

Y = ξ + ω Z = µ+ σ Z0

via the ‘centred variable’

Z0 = (Z − E{Z})/std.dev.(Z )

CP = (µ, σ, γ1)

In parallel, CP avoids singularity of the information matrix
Importantly, CP is easier to interpret than DP
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SN log-likelihood: using CP with the Barolo data

deviance (LRT) : D(θ) = 2 {log L(θ̂)− log L(θ)}
profile deviance : D(θ) = 2 {log L(θ̂, ψ̂)− log L(θ, ψ̂(θ))}
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ST log L

With ST model no stationarity of log L at α = 0
hence no singularity of information matrix at α = 0
in fact, these issues are specific ‘only’ of ϕ baseline
still CP useful for easier interpretability
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Básis (d ≥ 1)
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Multivariate skew-normal distribution: genesis

SN was constructed from bivariate standard normal (X ,W ) as

Z = (X |W ≥ 0)

Now start from (d + 1)-dimensional Normal with std margianle(
d X
1 W

)
∼ Nd+1(0, Σ̄)

where Σ̄ is a correlation matrix

Σ̄ =

(
Ω̄ δ
δ> 1

)
and then use the same conditioning process: Z = (X |W ≥ 0)
except that now X is d-dimensional
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Multivariate SN – illustration of genesis
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Multivariate SN — basic formal facts

If Z = (X |W ≥ 0), its density function turns out to be:

2 ϕd(x ; Ω̄) Φ(α>x), x ∈ Rd ,

where ϕd(x ;V ) is Nd(0,V ) density and

α =
(
1− δ>Ω̄−1δ

)−1/2
Ω̄−1δ ∈ Rd

Moment generating function has a simple expression:

M(t) = 2 exp(1
2 t
>Ω̄>t) Φ(δ>t)

=⇒ can compute moments, e.g. E{Z} =
√

2/π δ
=⇒ derive further properties
Additive representation extends to multivariate SN:

Z =
(
Id − diag(δ)2)1/2 U0 + δ |U1|

where U0 ∼ Nd(0,Ψ) ⊥⊥ U1 ∼ N(0, 1).
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Multivariate SN — include location and scale

Start from Z = (Z1, . . . ,Zd)> with density 2 ϕd(x ; Ω̄) Φ(α>x)

introduce location and scale:Y1
...
Yd

 =

ξ1...
ξd

+

ω1 0
. . .

0 ωd


Z1

...
Zd


write more compactly

Y = ξ + ω Z

where ω = diag(ω1, . . . , ωd)

notation: Y ∼ SNd(ξ,Ω, α) where Ω = ω Ω̄ ω

density at x ∈ Rd :

2 ϕd(x − ξ; Ω) Φ(α ω−1(x − ξ))
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Recall elliptical families

Recall continuous elliptically contoured (EC) distributions
Density constant on ellipsoids:

f (x) =
cd

(det Σ)1/2 gd

(
(x − µ)>Σ−1(x − µ)

)
, x ∈ Rd

Notation: X ∼ ECd(µ,Σ, gd)
density is centrally symmetric about µ: f (x − µ) = f (µ− x)
Extends the normal distribution which corresponds to

gd(u) = exp(−u/2)

The key aspect is that the EC family encompasses many others
and it still preserves various properties of normal distribution:

family closed under marginalization
family closed under conditioning
conditional mean is linear function of the conditioning variables

An interesting case is the multivariate Student’s t:

gd(u) = (1 + u/ν)−(d+ν)/2
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Skew-elliptical distributions

Start from (
X

W

)
∼ ECd+1(0, Σ̄, gd+1)

and apply the ‘usual’ conditioning (or selection) process:

Z = (X |W > 0)

Introduce location and scale: Y = ξ + ω Z
Terminology: Y and Z have skew-elliptical distribution (SEC)
If (X ,W ) is normal, reproduce Y ∼ SNd(ξ,Ω, α)
Another noteworthy case with (X ,W ) ∼ td+1(0, Σ̄, ν):

Y ∼ STd(ξ,Ω, α, ν)

density of normalized r.v. Z ∼ STd(0, Ω̄, α, ν):

2 : td(z ; Ω̄) T

(
α>z

√
ν + d

ν + z>Ω̄−1z
; ν + d

)
, z ∈ Rd
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A general result

Lemma (Multivariate version)

If f0 is a PDF on Rd and G0 a continuous CDF on R, both
symmetric about 0, then

f (x) = 2 f0(x) G0{w(x)}, x ∈ Rd ,

is a proper density function for any odd function w(·) on Rd .

Proof: a simple extension of the univariate version.

Notes:
(1) f0 symmetric on Rd means f0(x) = f0(−x) for all x ∈ Rd

(2) w odd function on Rd means w(−x) = −w(x) for all x ∈ Rd .
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A general result — comments

Both SNd and STd have density like f (x) in the lemma
Can show that all SEC distributions have this structure
with ‘baseline density’ f0 of elliptical type
But the lemma allows f0 to be non-elliptical and G0 can be
unrelated to f0, unlike in SEC’s
This modulation process can produce all sort of shapes,
even quite bizarre ones, not just ‘skew’
Next plots illustrate this point using

f0 = ϕ2, G0 = Φ

w(x1, x2) = a1 x1 + a2 x2 + a3 x
3
1 + a4 x

3
2 + a5 x

2
1 x2 + a6 x1 x

2
2
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Examples of modulated bivariate normal densities
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Some formal properties of the general constuction

f (x) = 2 f0(x) G0{w(x)}, x ∈ Rd

Stochastic representation If X ∼ f0 ⊥⊥ T ∼ G0, then

Z =

{
X if T ≤ w(X )

−X otherwise
has density f (·)

Perturbation (or modulation) invariance Now holds multivariate:

t(Z )
d
= t(X )

for any even t(x), mapping Rd → Rq

Examples If Y ∼ SNd(ξ,Ω, α) and V ∼ STd(ξ,Ω, α, ν), then

(Y − ξ)>Ω−1(Y − ξ) ∼ χ2
d

(V − ξ)>Ω−1(V − ξ) ∼ d × F (d , ν)

These facts are useful for model diagnostics.
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Many additional developments

Many forms of generalization exist
The more tractable case is the extended SN and alike:
start from (X ,W ) ∼ N2 and take (X |W ≥ c) with c ∈ R
Important extension: m-dimentional conditioning variable W

relatively tractable in normal context (Closed SN)
to some extent also tractable in EC class

General selection mechanism:
replace (· · · |W ≥ 0) by (· · · |W ∈ C ) with C ⊂ Rm

(For general C , difficult to find normalizing constant)

46 / 50



Prólogos Básis (d=1) Plus (d = 1) Data Básis (d ≥ 1) Ultra Ω

Use in statistical methods and applied areas

Two intersecting levels of work:
Extensions of standard statistical methods
Application in diverse fields, often with suitable
methodological adaption of existing techniques

Many domains:
classical areas of statistical methods, such as longitudinal data,
factor analysis, item response analysis, . . .
much impact especially in model-based clustering
flexible distributions provide a route to robustness
much work in finance, theoretical and empirical
but also in environmental risk, medical statistics, econometrics,
income distribution, data confidentiality, insurance, industrial
statistics and reliability, cell biology, forestry, et cetera. . .
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Any future?

Formidable work has been deployed, but still room for progress
Extension of standard statistical methods for more flexible
models, with applications
Futher advances possible in the study of flexible distributions
(a personal view presented in more specialized topic session)
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Resources

A complete list of references would take many pages.
An absolutely minimal list is:

A Azzalini & A Capitanio (2014), monograph, Cambridge UP

MG Genton (2004), edited volume, C&H/CRC

R software: https://cran.r-project.org/package=sn

50 / 50

https://cran.r-project.org/package=sn

	Prólogos
	Básis (d=1)
	Plus (d=1)
	Data
	Básis (d1)
	Ultra
	

