Stochastic representations and other properties of skew-symmetric distributions

Adelchi Azzalini

Università di Padova, Italia

a talk at Universität Rostock, 29 Sept 2011

Overview

- a brief introduction to skew-symmetric distributions
- stochastic representations and some implications
- a few important subclasses
- other interesting properties

Skew-symmetric distributions: basic construct

Start from a symmetric 'base' PDF, and modify it

lf

 f_0 a (centrally) symmetric density in \mathbb{R}^d : $f_0(x) = f_0(-x)$ G_0 univariate CDF, such that G' is even w odd real-valued function: w(-x) = -w(x)then

$$f(x) = 2 f_0(x) G_0\{w(x)\}$$

is a proper density function on \mathbb{R}^d .

- The proof is surprisingly simple (next slide)
- In practical work include location and scale parameters, dependence on covariates, etc
- Several variants and further extensions exist.

$$f(x) = 2 f_0(x) G_0\{w(x)\}$$

The proof that $\int f = 1$ is elementary *and* instructive.

• take
$$Y \sim f_0$$
 and $W = w(Y)$.

If X ~ G'_0, independent of Y, then X - W symmetric about 0.
Hence

$$\frac{1}{2} = \mathbb{P}\{X \leq W\} = \mathbb{E}_{Y}\{\mathbb{P}\{X \leq w(Y)|Y\}\} = \int_{\mathbb{R}^{d}} G_{0}(w(y)) f_{0}(y) \,\mathrm{d}y$$

An essentially equivalent formulation

$$f(x) = 2 f_0(x) G(x),$$
 where $G(x) = G_0\{w(x)\}$

- properties: $G(x) \ge 0$ and G(x) + G(-x) = 1, for any $x \in \mathbb{R}^d$.
- Can do the development using G(x) with above properties.
- Essentially equivalent constructions.
- Work with G is mathematially neater
- Actual specification of G is convenient via $G(x) = G_0\{w(x)\}$

An example: perturbed Beta distribution

$$f(x) = 2 f_0(x) G_0\{w(x)\}, \qquad x \in (-1,1)^2$$

- $f_0\,$ the product of two symmetric Beta densities in $(-1,1),\,$ with parameters a and $b\,$
- G_0 the standard logistic distribution function
 - w let

$$w(y) = \frac{\sin(p_1y_1 + p_2y_2)}{1 + \cos(q_1y_1 + q_2y_2)}$$

Closing

Example (ctd): perturbed Beta distribution

Important case: The skew-normal distribution (SN)

$$f(x) = 2 \phi_d(x; \overline{\Omega}) \Phi(\alpha^\top x), \qquad (x \in \mathbb{R}^d)$$

where

- $\phi_d(x; \bar{\Omega})$ denotes $N_d(0, \bar{\Omega})$ pdf, $\bar{\Omega}$ a correlation matrix
- $\Phi(\cdot)$ denotes N(0, 1) cdf
- $\alpha \in \mathbb{R}^d$ is a vector of shape parameters

Allow for location and scale: if $Z \sim f(\cdot)$, let

$$Y = \xi + \omega Z$$
, $(\omega = diagonal matrix > 0)$

Parameters: ξ (location), $\Omega = \omega \overline{\Omega} \omega$ (scale), α (shape)

Opening

SN distribution (ctd)

A general stochastic representation

$$f(x) = 2 f_0(x) G_0\{w(x)\}$$

want stochastic representation for $Z \sim f$

• The proof that $\int f = 1$ implies that

$$Z = Y | X < w(Y)$$

if $X \sim G'$, $Y \sim f_0$, independent.

• When $X \ge w(Y)$, then $-X \le w(-Y)$, and $-Y \sim f$.

Hence

$$Z = egin{cases} Y & ext{if } X \leq w(Y) \ -Y & ext{otherwise} \end{cases}$$

• Alternative proof by direct calculation

Perturbation invariance property

$$\begin{array}{rcl} Y & \sim & f_0(x) \\ Z & \sim & 2 f_0(x) \ G_0(w(x)) \end{array}$$

• Recall:
$$Z = \begin{cases} Y & \text{if } X \leq w(Y) \\ -Y & \text{otherwise} \end{cases}$$

- Corollary: $t(Z) \stackrel{d}{=} t(Y)$ for any even function $t(\cdot)$
- Lots of implications, including:
 - equality of even order moments,
 - the same distribution of quadratic forms
 - if t is q-dimensional, independence is preserved

Skew elliptical distributions

• elliptical distribution (with 0 mean):

$$f_0(x) = \frac{c_d}{|\Omega|^{1/2}} \tilde{f}(x^\top \Omega^{-1} x)$$

• broad-sense 'skew-elliptical':

$$f(x) = 2 f_0(x)G_0\{w(x)\},$$
 where f_0 is elliptical

• narrow-sense 'skew-elliptical': start from (1 + d) dimensional elliptical variate (Y_0, Y) and take

$$Z = \begin{cases} Y & \text{if } Y_0 > 0 \\ -Y & \text{if } Y_0 < 0 \end{cases}$$

 $\bullet\,$ narrow-sense 'skew-elliptical' $\subset\,$ broad-sense 'skew-elliptical'

Skew elliptical distributions (ctd.)

• (narrow-sense) skew-elliptical variate are build with an additional stochastic representation

$$Z = \begin{cases} Y & \text{if } Y_0 > 0 \\ -Y & \text{if } Y_0 < 0 \end{cases}$$

And another one:

$$Z_j = \delta_j |Y_0| + \sqrt{1 - \delta_j^2} Y_j, \qquad j = 1, \dots, d$$

for suitable δ_j 's depending on the distribution of (Y₀, Y)

• For d = 2, yet another one

$$Z = \max(Y_0, Y)$$

A wealth of other properties exist

• Any density function *f* admits a skew-symmetric representation:

$$f_0(x) = \frac{f(x) + f(-x)}{2}, \qquad G(x) = \frac{f(x)}{2f_0(x)}$$

- Perturbation invariance property is a characterization: i.e. $t(X) \stackrel{d}{=} t(Y)$ for all t, then X and Y share the same base f_0 in their skew-symmetric representation
- in the case d = 1, a stochastic ordering of distributions with common f_0 and varying G can be established, for suitable G's
- ... lots more

Recap

- a vast family: skew-symmetric distributions (SSD)
- the aim is to achieve flexibility, not 'skewness'
- SSD allow a stochastic representation with usefull implications
- an important subset: skew-elliptical distributions (SED)
- SED family has a stronger structure and it allows additional stochastic representations
- further appealing properties hold, especially for SED

References

- Azzalini (1986, Statistica)
- Azzalini & Capitanio (2003, JRSS-B)
- Wang, Boyer & Genton (2004, Stat. Sinica)
- Azzalini (2005, SJS), a review paper
- Azzalini & Regoli (2011, to appear in AISM)

