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Density estimation: very schematically

density estimation =


parametric

in-between: ≈ ∅

non-parametric

Our aim:
move a step into the ≈ ∅ space
a bit more specifically, a step in the multivariate domain
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Multivariate densities

Context: non-parametric density estimation in Rd

problems grow with increasing d

this is called ‘the curse of dimensionality’
especially frustrating as it clashes with common perception:
real data structures are not really that complex
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About dimensionality

D. W. Scott (2015), Multivariate Density Estimation, 2nd edition, p.217
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The driving idea
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The idea, in broad terms

Target: alleviate the problem of dimensionality
broad idea: adopt an intermediate formulation
stay between parametric and non-parametric formulation
need to insert a ‘light’ parametric structure

This broad idea is open to various interpretations
we explore one of them
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Simplify the dependence structure
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Simplify the dependence structure

are all variables jointly related to all variables?
perhaps, in some cases
for other cases, we want to trim the dependence depth
. . . but, to reduce ‘dependence depth’, we must define it
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Adopt a non-parametric density estimate

Available sample: (y1, . . . , yn), where yi ∈ Rd

Consider classical kernel density estimate (KDE):

f̃ (x) =
1
n

n∑
i=1

1
det(h)

K
(
h−1(x − yi )

)
, x ∈ Rd ,

having chosen
a kernel function K , e.g. density Nd(0, Id),
a diagonal matrix h of positive smoothing parameters

However, other estimates could be used.
Aim: suitably modify classical KDE f̃ (x)
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Borrowing tools

Borrow tools from log-linear models theory
Consider d-dimensional frequency table
Cell (log-)probabilities are expressed in a hierarchical structure
For instance, if d = 3:

log πrst = λ0 + [λ
(1)
r + λ

(2)
s + λ

(3)
t ]

+[λ
(12)
rs + λ

(13)
rt + λ

(23)
st ] + [λ

(123)
rst ]

with constraints among the λ’s
Simplify dependence structure by eliminating high-order terms
Next, we plug this idea in the density estimation context
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Adjust cells frequencies

From sample (y1, . . . , yn), build d-dimensional frequency table
Fit log-linear model to this table, with terms up to m-th order
If j-th cell has frequency nj , denote its fitted frequency by n̂j

Proposal: sample point yi belonging to j-th cell is given weight

wj(i) = n̂j/nj

so that the whole cell has weight n̂j
Modified estimate:

f̂ (x) =
1
n

n∑
i=1

wj(i)

det(h)
K
(
h−1(x − yi )

)
, x ∈ Rd ,

local smoothing is combined with frequencies from log-linear
model (the global smoother)
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An ultra-simple illustration with n = 250 data from N2(0, I2)

With d = 2, the only reduced log-linear model has m = 1 (independence)
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Details

There are various practical details to handle:
choice of cells/subdivisions for each axis?
the smoothing parameter (as ever!)
what to do when nj = 0?
choice of m?

Refer to the published paper for most of these points.
Here only examine choice of m.
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Numerical work
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Simulations set-up

Sample data with density

f (x) = π f1(x) + (1− π) f2(x)
considering

either 0 < π < 1 or π = 1
f1, f2 either skew-normal or skew-t with ν = 2, 5,∞
various correlation structures for f1, f2
d from 3 to 5
m = 2 or m = 3, provided m < d

in most cases n = 500, sometimes n = 250 or 1000
for each setting, N = 2500 samples

A full-factorial experiment is ‘impossible’, only a subset of cases.
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Choose summary quantities

Choice of summary quantities is not so obvious.
Start from measure of error at a point x :

e0(x) =
|f̃ (x)− f (x)|

f (x)1/2
, e(x) =

|f̂ (x)− f (x)|
f (x)1/2

where
e0(x) refers to classical KDE
e(x) refers to new proposal

consider quantiles Q0(p),Q(p) at levels p = (0.5, 0.75, 0.95)
final summary:

R(p) =
Q0(p)− Q(p)

Q0(p)

if R(p) > 0 there is an improvement over classical method

16 / 22



Context Idea Simplify structure Numerical work Closing

Summary outcome
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Comments

in most cases R(p) > 0, often by a good margin
m = 2 superior to m = 3
red points (unimodal) higher than blue points (mixtures)
similar indications from other summaries
(e.g. evaluation at the observed points, instead of a fixed grid)

Operational indication: just use m = 2
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Closing
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Application to density-based cluster analysis

A natural application: density-based clustering methods
clusters are associated to sets in Rd having high density
specific exploration with R package pdfCluster
using new estimate of the density
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Clustering olive oil data

Clustering olive-oil data: true versus reconstructed groups
with R package pdfCluster

classical KDE new estimate
1 2 3 1 2 3

South 321 0 2 323 0 0
Sardinia 0 98 0 0 98 0
Centre-North 0 45 106 0 22 129
ARI 0.873 0.937
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Paper

Azzalini, A. (2016). Combining local and global smoothing in
multivariate density estimation. Stat, 4.129.
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