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Brief review: approaches commonly in use
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Binary longitudinal data

I A set of n individuals observed along time
I Response variable Y is binary (values: 0 and 1, say)
I Notation: response at time t from subject i is

yit =

{
0
1

e.g. i th individual profile is yi = (1,1,0,1,0,1)

I Covariates, Xit , also recorded
I In general, want to relate X ’s and Y
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What is the purpose of this talk

I Partly a review and discussion
I Partly presentation of specific results

joint work with Helena Gonçalves (U. Algarve, Portugal)
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Approaches: transition models

Transition models
I model transitions of an individual

P{Yit = 1|past profile, covariates }

e. g.
logit

(
P
{

Yit = 1|yi,t−1, xit
})

= β0 + β1 yi,t−1 + β2 xit

I simple in formulation
I writing log-likelihood is immediate

using direct Markov chain connection
I OK if we want to model transitions
I but often we want to model marginal probability
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Transition models
Marginal models
Marginal likelihood-based models

Approaches: marginal models

Marginal models
I in many cases, interest is mostly in

P{Yit = 1|covariates }

allowing for dependence within a given profile yi

I dependence structure is ‘nuisance component’
I difficult to formulate fully-specified stochastic models

with prescribed properties
I alternative route: do not attempt full stochastic

specification
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Marginal likelihood-based models

Approaches: marginal models via GEE

Generalized estimating equations (GEE)
I no full stochastic specification
I model quantity of interest: P{Yit = 1|covariates }
I requires specification of a ‘working correlation structure’,

to accomodate correlation structure,
compute std.errors ‘adjusted’ for presence of dependence

I Ok if we are only interested in the population behaviour
I cannot be used to tackle questions on individual profiles

eg. P{yi4 = 1|past = (1,0,1), xit} =?
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Approaches: marginal likelihood-based models

Want (full) stochastic formulation for marginal modelling
I purpose:

(a) use standard likelihood-based inferences
(b) model population as well as individual behaviour

I aim at stochastic model for profile Yi such that

P{Yit = 1|Xit = x} = θit

is represented by
logit θit = x>β ,

or possibly other link function in place of logit
I from full stochastic specification, modelling of (serial)

dependence must be allowed
I special interest for individual random effects
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‘Mixed parameter’ formulation

‘Mixed parameter’ formulation (Fitzmaurice & Laird, 1993)
I based on mixed mean and canonical association

parameters in exponential families
I orthogonal regression parameters, β, and association

parameters (α)
I various desirable features:

I robustness to misspecification of time dependence
I var

{
β̂
}

not influenced by knowledge of α,

at least asymptotically
I some drawbacks:

I association parameters are conditional log-odds ratios
I distribution is not “reproducible”, as profile length varies
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Markov chain re-parametrization
Markov chain re-parametrization (Azzalini, 1994)

I build 1st order Markov chain such that

P{Yit = 1|Xit = x} = θit = logit−1(x>β)

and
OR(Yit ,Yi,t−1) = ψ

by solving equation to get suitable transition matrix,
which depends on (yi,t−1, θit , θi,t−1, ψ)

I desirable features:
I likelihood expression is simple
I parameter interpretation is transparent
I orthogonal parameters, β and ψ
I time length Ti unrestricted, possibly non-constant

I drawback: only one parameter to regulate dependence
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Random effects

I random effects, in a simple case:

logit(P{Yit |x ,bi}) = x>β + bi

where bi ∼ N(0, σ2)

I problems:
(a) computational, due to integration wrt dist’n of bi

(b) interpretation of parameters, since

E
{

eη+b

1 + eη+b

}
6= eη

1 + eη

where η = x>β, hence meaning of β changes
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Marginalized random effects

Alternative formulation to random effects
(Heagerty, 1999; Heagerty & Zeger, 2000)

I similar logic of MC marginalisation is applied to random
effects: find ∆ = ∆(x , σ) such that

logit−1(η) =

∫ ∞

−∞
logit−1(∆ + σz) φ(z) dz

I requires repeated solution of integral equation
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Marginal models with MC2 dependence

2nd order MC

I general idea: extend approach of Azzalini (1994) to 2nd
order dependence

I specifically: formulate 2nd order MC such that

P{Yt = 1|Xt = x} = θt

(index i dropped) is given by

logit θt = x>β

allowing dependence on (Yt−2,Yt−1)

I in 2 × 2 × 2 probability table of (Yt−2,Yt−1,Yt) the above
condition sets 3 probabilities, hence 4 parameters left

I parsimoniuos choice: use two parameters for modelling
dependence, and add two constraints
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Marginal models with MC2 dependence

2nd order MC (cntd)

I Choice among possible parameters & constraints: impose

OR(Yt−1,Yt−2) = ψ1 = OR(Yt−1,Yt)

OR(Yt−2,Yt |Yt−1 = 0) = ψ2 = OR(Yt−2,Yt |Yt−1 = 1)

I analogy with Gaussian AR(2) models,
referred to OR in place of partial correlations

I technical problem:
solve elements of MC transition matrix for given β, ψ1, ψ2
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2nd order MC (cntd)

Further work & related work
I obtain derivatives of logL to improve optimisation

(even more messy algebra)
I allow for missing data (further complications. . . )
I random effects: possible but desirable to incorporate with

Heagerty’s (1999) approach
I another 2nd order model (Heagerty & Zeger, 2000):

logit(phj) = ∆ + γ1 j + γ2 h

turns out to be formally equivalent, but
(a) parameter interpretation is simpler for above OR
(b) transition probabilities not given explicitly
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