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Some approaches to clustering

Clustering problem (loosely)

d characteristics are observed on each of n objects
→ identify sets of homogeneous groups of objects.

Teminology: called ‘unsupervised classification’ in machine learning

Some approaches:
methods based on distance/dissimilarity
(hierarchical and non-hierarchical)
finite mixtures of parametric probability distributions,
typically for continuous variables
methods based on a non-parametric density estimate
→ discuss a specific proposal
(proposals of similar logic exist, no attempt of a full discussion)
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Clusters as regions of high density

The idea goes back to Wishart (1969) and Hartigan (1975)
“Clusters may be thought of as regions of high density
separated from [. . . ] other regions of low density”
“it is easy to show that such clusters form a tree”
but the computational burden prevented its exploration

an appealing feature is the explicitly-stated notion of cluster
[holds for model-based approach too, not for dissimilarity-based methods]
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Clusters at various density levels
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Clusters tree
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Clusters as regions of high density

R(c) = {x : x ∈ Rd , f (x) ≥ c}, P{R(cp)} = p

m(p) = number of modes associated to level p
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Mode function m(p)

as p ranges in (0, 1), produce a step function m(p)
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put m(0) = m(1) = 0

total number of increments of m(p) is the number of modes of f (x),
it coincides with the number of decrements

other features of f (x) can be inferred from m(p)
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Sample version of R(cp)

Observe n data points in Rd

Obtain f̂ of f , e. g. by kernel method
Estimate:

R̂(cp) = {x : x ∈ Rd , f̂ (x) ≥ cp}, p ∈ (0, 1)

‘Sample only’ version:

S(cp) = {xi : xi ∈ S , f̂ (xi ) ≥ cp}, p ∈ (0, 1)

For given p, identification of the connected components of
S(cp) and of the tree structure of the modes is not trivial
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How to find connected components

Voronoi tessellation
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How to find connected components

Voronoi tessellation
and Delaunay triangulation

9 / 28



Basic concepts Tessellations Illustration Larger d Closing

How to find connected components

Voronoi tessellation after removing edges of points
and Delaunay triangulation with low density
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Method

compute f̂

compute Delaunay Triangulation (DT)
for ‘all’ p ∈ (0, 1)
(a) remove points of low density (f̂ < cp) from DT
(b) find members of connected sets
(c) compute m(p)

build tree of modes
and form initial ‘cluster cores’
allocate remaining points
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Allocation of points outside initial groupings

classification problem:
for any given x0, allocate it among identified ‘cluster cores’,
having estimated densities f̂1, . . . , f̂M
peculiar aspect: x0 is not a randomly selected point
allocate x0 according to highest density ratio

rj(x0) =
f̂j(x0)

maxk 6=j f̂k(x0)
, j = 1, . . . ,M

repeat for all x0’s to be allocated
Possible variants:

keep f̂1, . . . , f̂M fixed for the whole process
update f̂j ’s sequentially after each point allocation
(hence start with the x0 having highest maxj rj(x0))
intermediate policy: update f̂j ’s in block-sequential manner
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Olive oil data – I

Fatty acid composition:
8 components of olive oil
on n = 572 oil specimens,
from 9 areas
belonging to three macro-areas
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Olive oil data – II

Consider ALR transform (xj = log(zj/zk ), j 6= k), with k = 4
use 5 principal components (96% of total variability)
f̂ from kernel method,
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Olive oil data – III
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Next step: classification of unallocated points using density ratio
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Olive oil data – IV

Truth Clusters
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Olive oil data – V

k-means (best out of 20)
macro.area 1 2 3
South 282 0 41
Sardinia 0 97 1
Centre-North 0 55 96
ARI=0.66

Hierarchical (complete linkage)
macro.area 1 2 3
South 107 216 0
Sardinia 98 0 0
Centre-North 88 0 63
ARI=0.28

Mclust (forcing 3 groups)
macro.area 1 2 3
South 0 323 0
Sardinia 1 0 97
Centre-North 151 0 0
ARI ≈ 1
(ARI=0.60 with 5 groups,
that is, Mclust’s own choice)

this method
macro.area 1 2 3
South 321 0 2
Sardinia 0 98 0
Centre-North 0 45 106
ARI=0.87
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Density-based ‘silhouette’ diagnostics

‘silhouette’ plots are diagnostics for quality of clustering
classical silhouette (Rousseeuw, 1987) based on distances
in the present context, introduce a density-based silhouette
start from posterior probability of cluster m for object xi :

π′m(xi ) =
πmfm(xi )∑
j πj fj(xi )

, m ∈ {1, . . . ,M}

then define

dbsi =
log[π′m0

(xi )/π
′
m1

(xi )]

maxk | log[π′m0
(xk)/π′m1

(xk)]|
where m0 is selected cluster for xi and m1 is best alternative
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Olive oil data – VI: silhouette plot

dbs plot

cluster median dbs =  0.38

cluster median dbs =  0.34

cluster median dbs =  0.28
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Discussion I

the method is not (explicitly) based on distance
hierarchical structure, but pruning is not required
provides an estimate of the number of groups
allows scoring confidence of allocation
or non-allocation of doubtful points
storage allocation is n × d
(instead of n2 for dissimilarity matrix)

since we focus on mode detection, not on fine aspects of f̂ ,
the outcome is not so sensitive to choice of the bandwidth
computation issue for large d :
DT time grows as O(nbd/2c) when d > 3
‘silhouette’-type diagnostics are available
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Variant method to avoid Delaunay triangulation (DT)

DT step prevents to handle large d (d > 6, say)
look for alternative to build sets of connected points
idea: for any pair of points (xi , xj) examine f̂ along the
segment joining them
this search is one-dimensional for any d

the presence of a ‘valley’ indicates separated groups
in principle, points must be connected if and only if there is no
‘valley’ between them
in practice, allow for sampling error and discard ‘small valleys’
requires to store matrix of size n × n
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Search along segments (1)
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Search along segments (2)
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Search along segments (3)
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Measuring the extension of a valley
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Dealing with non-continuous variables

clearly categorical and discrete data cannot be handled directly
the same problem exists for model-based clustering, in practice
a simple practical solution:

obtain matrix of dissimilarity between objects
use multidimentional scaling to construct continuous variables
apply clustering method to these variables

how many MDS variables? use background information
useful to jitter constructed variables to avoid replicated values
In case of mixed variables, two variants:

we can start from dissimilarity matrix computed on all variables
use dissimilarity of non-continuous variables and then merge
MDS variables with original continuous variables
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Discussion II: final remarks

depending on magnitude of d , use either DT or the ‘valleys’
technique to build graph of connections among objects
the method appears to work well as for quality of outcome
for small to medium-sized d

for large d , ‘curse of dimensionality’ is there,
but not as serious as when focus is on estimation of f
use of variable bandwidth for f̂ helps in high dimensions
but still room for improvement
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Articles and software

Azzalini & Torelli (2007), Stat. & Comp., 17, 71–80
Menardi (2011), Stat. & Comp., 21, 295–308
Menardi & Azzalini (2014), Stat. & Comp., 24, 753–767
Azzalini & Menardi (2014), J. Stat. Software, 57 (11)
provides an overview of the formulation and use of software

Azzalini (2015), chapter in Handbook of Cluster Analysis
an overview more on the theoretical side

Azzalini & Menardi (2016), Comp. Stat., 31, 771–798

R package pdfCluster on CRAN
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