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Sample selection, general

Denote by Y the variable of interest (target) and
by Yobs the sampling variable (actual observations)
Ideally

Y ≡ Yobs

In some cases, the two variables do not coincide
Usual source of problem is some censoring mechanism
typically this occurs in observational studies
The term ‘sample selection’ commonly related to Heckman
work (1976, 1979), although earlier work exist (Gronau, 1974)
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Key example

Y ∼ N(µ, σ2) is of interest
consider case where Y is associated to U, assume specifically(

U
Y

)
∼ N2

((
τ
µ

)
,

(
1 ρσ
ρσ σ2

))
suppose we observe Y conditionally on U ≥ 0
distribution of observed Yobs values is

fobs(x) =
1
σ
ϕ(z)︸ ︷︷ ︸

N(µ,σ2)

[
Φ

(
τ + ρz√
1− ρ2

)/
Φ(τ)

]
︸ ︷︷ ︸

perturbation factor

, z =

(
x − µ
σ

)
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Key example, visually

(
U
Y

)
∼ N2

((
1/3
2/3

)
,

(
1 3/4

3/4 1

))
, n = 1000 sample values
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Classical real case (Heckman, 1979)

Y represents women wage: Y1, . . . ,Yn

Yi = x>i β︸︷︷︸
µi

+εi , where xi are covariates, interest in β ∈ Rp

Ui = w>i γ︸︷︷︸
τi

+ζi , where wi are covariates, γ ∈ Rp

(Ui ,Yi ) jointly normal, individuals behave independently
if Ui ≤ 0 the woman decides not to work
we do not observe the latent variable Ui , but only

Di =

{
1 if Ui > 0 (i.e. the woman works)
0 otherwise

available information is of the form:
work/no work (d) : 1 0 1 1 1 0 1 1 0...

salary (yobs) : y ? y y y ? y y ?...

4 / 19



Sample selection Modulated distributions General selection Numerical work Closing

Likelihood function of Heckman’s model

Notation: di is realized value of Di , yi is realized valued of Yi

available data:
d1, . . . , dn: work (yes/no), yi : wage, only when di = 1

P{Di = 1} = Φ(τi )

PDF of (Yi |Di = 1) = (Normal PDF)(yi )× (perturbation factor)

log L =
∑
di=1

log [P{Di = 1} × f (yi |Di = 1)] +
∑
di=0

log P{Di = 0}

=
∑
di=1

log
[

f (yi )︸︷︷︸
N(µi ,σ2)

× P{Di = 1|yi}
]

+
∑
di=0

log [1− Φ(τi )]

where

P{Di = 1|yi} = Φ

(
τ + ρzi√
1− ρ2

)
, zi =

(
yi − µi
σ

)
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Some remarks and related work

the resulting estimate is corrected for selection bias
widely applied construction in socio-economic literature
criticism: results strongly dependent on normality assumption
Non-parametric and semi-parametric formulations exist,
but not much used in practice; large datasets are required
robust versions for continuous response
(Marchenko & Genton, 2012; Zhelonkin et alii, 2016)
less development for discrete response variables
(probit adjusted ‘á la Heckman’: Van de Ven & Van Praag, 1981)

recent work using copulae to regulate dependence
(Marra & Wyszynski, 2016, 2017)
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Our plan of work

highlight connection with literature on ‘modulated symmetry’
develop a general construction for selection distributions
work in a (flexible) parametric context
focus especially on discrete distributions
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Symmetry-modulated distributions

‘Extendend skew-normal distribution’:

fobs(x) =
1
σ
ϕ(z)︸ ︷︷ ︸

N(µ,σ2)

[
Φ

(
τ + ρz√
1− ρ2

)/
Φ(τ)

]
︸ ︷︷ ︸

perturbation factor

, z =

(
x − µ
σ

)

this is an instance of a general construction of continuous type

fobs(x) = f (x)
[
G (x)/π

]
where

G (x) = P{x is observed | Y = x is sampled from f } ,
π = P{actually observe the sampled value} = Ef {G (Y )}

under appropriate symmetry conditions, π = 1/2 holds
multivariate extensions are simple to obtain
see Azzalini & Capitanio (2014) for an overview
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Selection as modulation of a general distribution

fobs(x) = f (x)G (x)/π (x ∈ R, or a subset)

adopt this construction with non-symmetric f , possibly discrete
in general, main technical issue is computation of

π = P{do observe a sampled valued} = Ef {G (Y )}
in the discrete case integration reduces to a summation
in continuous case use numerical integration
log-likelihood:

log L =
∑
di=1

log [f (yi )× P{Di = 1|yi}] +
∑
di=0

log P{Di = 0}

=
∑
di=1

log{f (yi ) G (yi )}+
∑
di=0

log (1− πi )
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Selection model for binary case, response component

The simplest case occurs with binary response:

P{Y = 1} = µ, P{Y = 0} = 1− µ
then

π = Ef {G (Y )} = (1− µ) G (0) + µG (1)

if E{Y } depends on covariates, then

πi = (1− µi ) G (0) + µi G (1), µi = function(x>i β)

most common choices are the logit and probit models:

µi =
exp(x>i β)

1 + exp(x>i β)
, µi = Φ(x>i β)

still need to introduce model for G (·) component. . .

10 / 19



Sample selection Modulated distributions General selection Numerical work Closing

Selection model for binary case, selection component

conceptually convenient to introduce a latent variable

T ∼ G0

and some appropriate function h(·), to write

G (y) = G0{h(y)} = P{T ≤ h(y)|Y = y}
covariates are incorporated in h(·) through τi = w>i γ

Instance A: T ∼ N(0, 1), h(y) = τi + αµ−1
i y

G (y) = Φ(τi + αµ−1
i y)

Instance B: T ∼ Expn(1), h(y) = exp(τi + αµ−1
i y)

G (y) = 1− exp{−exp(τi + αµ−1
i y)}

Instance C, . . .
(ideally motivated by subject matter considerations)
parameter α plays a similar role of ρ in Heckman’s model
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Other discrete distributions

Yi ∼ Poisson(µi ), µi = exp(x>i β)

approximate π by truncated sum

πi ≈
K∑

k=0

e−µi µki
k!

G (k) ,

options for G (·) as before
Negative Binomial and other discrete distributions handled
similarly
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An alternative form of selection mechanism

An interesting alternative for G is to take T ∼ Expn(1) and

h(y) = exp(τ) + αµ−1 y = λ+ η y

leading to
G (y) = 1− exp{−(λ+ η y)}

Then for a positive response Y (discrete or continuous) get
exactly

π =

∫ ∞
0

f (y)
(
1− e−λ−ηy

)
dy = 1− e−λ M(−η)

provided moment generating function M(·) of f is known
restriction: requires α ≥ 0
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Computational aspects

parameters: α and θ = (β>, γ,> , ψ)
where ψ may be an additional parameter of f , e.g. dispersion
to maximize log L, consider profile log-likelihood

log Lp(α) = log L(α, θ̂(α))

and evaluate over a grid of α values
initial values of θ: take α = 0 and fit two separate generalized
linear models for Y and D

first- and second-order derivatives of log L are available,
for a given α, hence numerical maximization is speeded-up
at the end of the process, retain α̂ which maximizes log Lp and
the corresponding θ̂(α̂)

standard errors from Hessian matrix of log L(α, θ̂(α))
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Numerical illustration with binary data

Consider data of Riphahn et al. (2003) about usage
preferences of German health insurance system
Yi : ‘subject i makes at least one visit to the doctor in the year’
Di : ‘subject i has subscribed for publich health insurance’
the data have been fitted by Greene (2012, p. 921–2) using the
bivariate probit method of Van de Ven & Van Praag (1981)
we fit also our model described above
general indication is broadly similar to earlier findings
two different choices of G (·) produce almost identical anwsers
(hence typical problem of classical Heckman model does not emerge)
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Numerical illustration with binary data, log Lp
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data: German doctor visits, first visit
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Short summary of simulation work

Various simulation experiments, whose basic structure was:
response: binary or Poisson variable,
selection: either earlier Instance A (normal T , linear h)

or Instance B (exponential T , exponential h)
µi = x>i β = 0.5 + 1.5 xi , τi = w>

i γ = 1 + xi + 1.5wi

Variants:
with or without ‘exclusion restriction’ (= without term 1.5wi )
increasing number of components in xi and wi to 6 and 7
Some experiments sampled data from a different dependence
model (copula)

Key finding: estimates of β remain nearly unbiased
even without exclusion restriction,
even sampling data from the ‘wrong’ dependence model
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Summary remarks

The proposed formulation is quite flexible,
it allows many specifications
Particularly suited for discrete response variables
The response and the selection equations are chosen separately
Estimation of the response equation appears robust
to misspecification of the selection mechanism
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